设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0,则不等式f(x)g(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 18:29:24
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0,则不等式f(x)g(x)
xVr@},Ry|D@ʛ 4t``,H2PK/q&<&8 *S==Mw[+W%7P']0x#mv}N`T.u2},AZf9r?,#j [ⲠҳRȤYJCl~vG&ǧPR*Uh (s j'JǹҢe͏I;#-6l7.o~1[ U Ii%#kR.^w"nW Jb:XjS#T6&IFEBHERYdl IhAbSJ;O%0N+'^>Fܗ(Q13иO ='?[Ғ#P0v)P(6-kSx;kNkR:zN7x [/wjB6cR_2$\gC9_tXor߹ڕ3]!Ty,ƿyz`>)]~XGhR/F05M6ԜWPos(Z_{ģeLg<4o^

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0,则不等式f(x)g(x)
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0,则不等式f(x)g(x)

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0,则不等式f(x)g(x)
分析:本题主要考查导数的运算法则及函数的性质.利用f(x)g(x)构造一个新函数 (x)=f(x)g(x),利用 (x)的性质解决问题.
解:设 (x)=f(x)g(x),则 ′(x)=f(x)g′(x)+f′(x)g(x)>0.
∴ (x)在(-∞,0)上是增函数且 (-3)=0.
又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数.
∴ (x)在(0,+∞)上也是增函数且 (3)=0.
当x

....

∴ (x)在(0,+∞)上也是增函数且 (3)=0.
当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;
当-3 (-3)=0,即f(x)g(x)>0.
同理,当0当x>3时,f(x)g(x)>0.
∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).
答案:...

全部展开

∴ (x)在(0,+∞)上也是增函数且 (3)=0.
当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;
当-3 (-3)=0,即f(x)g(x)>0.
同理,当0当x>3时,f(x)g(x)>0.
∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).
答案:(-∞,-3)∪(0,3) 解:设 (x)=f(x)g(x),则 ′(x)=f(x)g′(x)+f′(x)g(x)>0.
∴ (x)在(-∞,0)上是增函数且 (-3)=0.
又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数.
∴ (x)在(0,+∞)上也是增函数且 (3)=0.
当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;

收起

分析:本题主要考查导数的运算法则及函数的性质.利用f(x)g(x)构造一个新函数 (x)=f(x)g(x),利用 (x)的性质解决问题.
解:设 (x)=f(x)g(x),则 ′(x)=f(x)g′(x)+f′(x)g(x)>0.
∴ (x)在(-∞,0)上是增函数且 (-3)=0.
又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数. <...

全部展开

分析:本题主要考查导数的运算法则及函数的性质.利用f(x)g(x)构造一个新函数 (x)=f(x)g(x),利用 (x)的性质解决问题.
解:设 (x)=f(x)g(x),则 ′(x)=f(x)g′(x)+f′(x)g(x)>0.
∴ (x)在(-∞,0)上是增函数且 (-3)=0.
又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数.
∴ (x)在(0,+∞)上也是增函数且 (3)=0.
当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;
当-3 (-3)=0,即f(x)g(x)>0.
同理,当0当x>3时,f(x)g(x)>0.
∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).
答案:(-∞,-3)∪(0,3)
专家提供: 回答者: 安振平 - 中学教育数学专家 1-9 10:23
函数且 (-3)=0.
又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数.
∴ (x)在(0,+∞)上也是增函数且 (3)=0.
当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;
当-3 (-3)=0,即f(x)g(x)>0.
同理,当0当x>3时,f(x)g(x)>0.
∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).
答案:(-∞,-3)∪(0,3)

收起

f(x)为奇函数,g(x)为偶函数

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x 设f(x)g(x)分别是定义在R上的奇函数和偶函数,当x 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x 设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0,则不等式f(x)g(x) 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当X0,且g(-3)=0,则不等式f(x)g(x) 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当X0,且g(-3)=0.则不等式f(x)g(x) 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0,则不等式f(x)g(x) 设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,都不等于0.当x>0时,f'(x)g(x) 设f(x),g(x)分别是定义在R上的奇函数和偶函数,g(x)不等于0,当x0,且f(-3)=0,则不等是f(x)g(x) 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当X0,且g(-3)=0,则不等式f(x)/g(x)>0的解集 f(x),g(x)分别是定义在R上的奇,偶函数x0,g(-3)=0,不等式f(x)g(x)0.∴ G(x)在(-∞,0)上是增函数且 G(-3)=0.又∵f(x)为奇函数,g(x)为偶函数,∴ (x)=f(x)g(x)为奇函数.∴ G(x)在(0,+∞)上也是增函数且 G(3)=0.当x 设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0,则不等式f(x)g(x) 设f(x)g(x)分别是定义在R上的奇函数和偶函数,当x0且g(-3)=0求不等式f(x)g(x) 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x0,且g(-3)=0,则不等式f(x)g(x) 导数与奇偶性设f(x),g(x)分别是定义在R上的奇函数与偶函数,当x0,且g(-3)=0则不等式f(x)g(x) 一道有关导数的题设f(x).g(x)分别是定义在R上的奇函数.偶函数,当x0,怎样推出y=f(x)g(x)在(负无穷,0)上单调递增?[f(x)g(x)]'不是等于f'(x)g(x)+f(x)g'(x)吗? 设f(x)g(x)分别是定义在R上的奇函数和偶函数,且g(x)不等于0,当x〈0时f'(x)g(x)-f(x)g'(x)>0,且f(2)=0.则不等式f(x)/g(x) f(x),g(x)分别是定义在R上的奇,偶函数x0,g(-3)=0,不等式f(x)g(x)0.∴ (x)在(-∞,0)上是增函数且 (-3)=0.又∵f(x)为奇函数,g(x)为偶函数,∴ (x)=f(x)g(x)为奇函数.∴ (x)在(0,+∞)上也是增函数且 (3)=0.当x