关于x的方程kx方+(k+2)x四分之k=0有两个不相等的实数根是否存在实数k使方程的两个实数根的倒数和等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:34:24
关于x的方程kx方+(k+2)x四分之k=0有两个不相等的实数根是否存在实数k使方程的两个实数根的倒数和等于0
x͒J@F$N&EąnfbV)j[^wIw}O21OMN2'q3iI3Yep7SD-s>.PbN~)hA?"1PTD!:=5|6W)eBlEFv Ar9X bޔݏ$r&s މ/yfP"ʆH2l0X 0JE F!ZHZگfi$]-ML9ąXN

关于x的方程kx方+(k+2)x四分之k=0有两个不相等的实数根是否存在实数k使方程的两个实数根的倒数和等于0
关于x的方程kx方+(k+2)x四分之k=0有两个不相等的实数根是否存在实数k使方程的两个实数根的倒数和等于0

关于x的方程kx方+(k+2)x四分之k=0有两个不相等的实数根是否存在实数k使方程的两个实数根的倒数和等于0
假设存在这样的实数k,
则可设x1,x2是方程kx²+(k+2)x+k/4=0的两根
∴x1+x2=-(k+2)/k,x1*x2=1/4
1/x1+1/x2=(x1+x2)/(x1*x2)=[-(k+2)/k]/(1/4)=0
即:4k(k+2)=0
∴k=0或k=-2
∵原方程为x的一元二次方程,故k=0舍去
当k=-2时,方程为:-2x²-1/2=0不成立
故假设不成立
∴这样的实数k不存在.