数学题如果(tana+1)/(1-tana)=2008,求1/cos2a+tan2a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:24:07
数学题如果(tana+1)/(1-tana)=2008,求1/cos2a+tan2a
数学题如果(tana+1)/(1-tana)=2008,求1/cos2a+tan2a
数学题如果(tana+1)/(1-tana)=2008,求1/cos2a+tan2a
2008
cos2A=(1-tanA^2)/(1+tanA^2)
tan2A=2tanA/(1+tanA^2)
1/cos2a+tan2a=(1+2tanA+tanA^2)/(1-tanA^2)
=(1+tanA)/(1-tanA)=2008
1/cos2a+tg2a
=(1+(tga)^2)/(1-(tga)^2)+2tga/(1-(tga)^2)
=(1+2tga+(tga)^2)/(1-(tga)^2)
=(1+tga)^2/(1-(tga)^2)
=(1+tga)/(1-tga)=2008
(tana+1)/(1-tana)=2008
tana+1=2008-2008tana
2009tana=2007
tana=2007/2009
cos2a=[(cosa)^2-(sina)^2]/1
=[(cosa)^2-(sina)^2]/[(cosa)^2+(sina)^2]
上下除以(cosa)^2
=[1-(sina/cosa)^2...
全部展开
(tana+1)/(1-tana)=2008
tana+1=2008-2008tana
2009tana=2007
tana=2007/2009
cos2a=[(cosa)^2-(sina)^2]/1
=[(cosa)^2-(sina)^2]/[(cosa)^2+(sina)^2]
上下除以(cosa)^2
=[1-(sina/cosa)^2]/[1+(sina/cosa)^2]
=[1-(tana)^2]/[1+(tana)^2]
=[1-(2007/2009)^2]/[1+(2007/2009)^2]
上下乘2009^2
=(2009^2-2007^2)/(2009^2+2007^2)
tan2a=2tana/[1-(tana)^2]=(2*2007/2009)/[1-(2007/2009)^2]
上下乘2009^2
=2*2007*2009/(2009^2-2007^2)
所以原式=1/[(2009^2-2007^2)/(2009^2+2007^2)]+2*2007*2009/(2009^2-2007^2)
=(2009^2+2*2007*2009+2007^2)/(2009^2+2007^2)
=(2009+2007)^2/(2009+2007)(2009-2007)
=(2009+2007)/(2009-2007)
=2008
收起