三角函数的收缩代换公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 15:34:54
三角函数的收缩代换公式
xWmOG+'Ulu)%&$J:RJ_H ئ6"Mo 'Bgg;Ӥߋ,13{#z}r˪>6ZWFYb{W(/ecͶߙjtG}:yݥAo;`b=7+M$5=J|eܞ`"[, ζwYl3~+^L]PC|⸝-ۧxd@<ɪ+|R\y)}RYv=դYf[@yȥV$gy6Dq5>ww=8=L'1 f$,;!˝{d~B HF<0{du|A#rji0F8 `#ytN R`wǁUH}fL.^ǚB\%;d<ˉ ڦ}gpRA0mCKj _@e NpYya<倔&x^~P~a&T$Ȭ'$ cS=ATb!"|3=񳉱Mى=5{N f@9k[PrYy]кX)O\bQUB0G6A')⸽ٰ;0&2h%EZcoAln-*5gE E2&o7hdr3q/ChZWăLA\LR%)J|dpc]@vZ7E`j Ha4wq|.X )M!а;Vw⮢0`k0yW>H,C

三角函数的收缩代换公式
三角函数的收缩代换公式

三角函数的收缩代换公式
对不起按错了.

你要问的可能是
y=sin(wx+φ)
一般用前后周期大小来考察,如:
y=sin2x,周期为π

y=sinx的周期为2π
这样变换前与变换后的x是伸长还是压缩一目了然;
一般地周期变大了w变小了,周期变不了w变大了;

 tanα ·cotα=1
  sinα ·cscα=1
  cosα ·secα=1 
  商的关系: 
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  平方关系:
  sin^2(α)+cos^2(α)=1
  1+tan^2(α)=sec^2(α)
  1+...

全部展开

 tanα ·cotα=1
  sinα ·cscα=1
  cosα ·secα=1 
  商的关系: 
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  平方关系:
  sin^2(α)+cos^2(α)=1
  1+tan^2(α)=sec^2(α)
  1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
  sin^2(α)+cos^2(α)=1
  tan α *cot α=1
一个特殊公式
  (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
  证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
  =sin(a+θ)*sin(a-θ)
坡度公式
  我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,
  即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作
  a(叫做坡角),那么 i=h/l=tan a.
锐角三角函数公式
  正弦: sin α=∠α的对边/∠α 的斜边
  余弦:cos α=∠α的邻边/∠α的斜边
  正切:tan α=∠α的对边/∠α的邻边
  余切:cot α=∠α的邻边/∠α的对边
二倍角公式
  正弦
  sin2A=2sinA·cosA
  余弦
  1.Cos2a=Cos^2(a)-Sin^2(a)
  2.Cos2a=1-2Sin^2(a)
  3.Cos2a=2Cos^2(a)-1
  即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
  正切
  tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
   sin3α=4sinα·sin(π/3+α)sin(π/3-α)
  cos3α=4cosα·cos(π/3+α)cos(π/3-α)
  tan3a = tan a · tan(π/3+a)· tan(π/3-a)
  三倍角公式推导 
  sin(3a)
  =sin(a+2a)
  =sin2acosa+cos2asina
  =2sina(1-sin²a)+(1-2sin²a)sina
  =3sina-4sin^3a
  cos3a
  =cos(2a+a)
  =cos2acosa-sin2asina
  =(2cos²a-1)cosa-2(1-cos^a)cosa
  =4cos^3a-3cosa
  sin3a=3sina-4sin^3a
  =4sina(3/4-sin²a)
  =4sina[(√3/2)²-sin²a]
  =4sina(sin²60°-sin²a)
  =4sina(sin60°+sina)(sin60°-sina)
  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
  =4sinasin(60°+a)sin(60°-a)
  cos3a=4cos^3a-3cosa
  =4cosa(cos²a-3/4)
  =4cosa[cos²a-(√3/2)^2]
  =4cosa(cos²a-cos²30°)
  =4cosa(cosa+cos30°)(cosa-cos30°)
  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
  =-4cosasin(a+30°)sin(a-30°)
  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
  =-4cosacos(60°-a)[-cos(60°+a)]
  =4cosacos(60°-a)cos(60°+a)
  上述两式相比可得
  tan3a=tanatan(60°-a)tan(60°+a)
  现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。包括一些图像问题和函数问题中 这应该比较详细了吧 希望对你有帮助

收起