y=4/2+根号x的值域y=(x²-x)/(x²-x+1)值域求大神来解,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:36:08
x)57~`g9醍f~U/5XOwAՁ?
=OgoyڻhX{:*t
LBbk虛قHg
Ov/5Cv1]%P(_\g
5
y=4/2+根号x的值域y=(x²-x)/(x²-x+1)值域求大神来解,
y=4/2+根号x的值域
y=(x²-x)/(x²-x+1)值域求大神来解,
y=4/2+根号x的值域y=(x²-x)/(x²-x+1)值域求大神来解,
化简可得:
y=(x*x-x+1-1)/(x*x-x+1)=1-1/(x*x-x+1)
也就是说只要计算出x*x-x+1的取值范围即可
而x*x-x+1=(x-0.5)*(x-0.5)+0.75>=0.75
所以0>-1/(x*x-x+1)>=-4/3
所以1>y>=-1/3