六年级数学题/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+.+1/(99*100)=?1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+......+1/(99*100)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:34:45
六年级数学题/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+.+1/(99*100)=?1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+......+1/(99*100)=?
xR]N@ I[R`^$MQ ƒ(*Ƥ1zgKEDl:;|LC>=~vvR$A4f5IgV f (d*D{ [_Zۻ_`Xᢔ4Ż aFypj`unp|AiRc){%wZ,NcN(EL'fs4B)*lM_I1bQ $< !2=Ǡ2O<"x§*qIVov>?6ieOf C\~daJ7yF)U\=re5y*iqZe *xl=6ZYm~v2\]cphL

六年级数学题/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+.+1/(99*100)=?1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+......+1/(99*100)=?
六年级数学题/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+.+1/(99*100)=?
1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+......+1/(99*100)=?

六年级数学题/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+.+1/(99*100)=?1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+......+1/(99*100)=?
原式=1-1/2+1/2-1/3+1/3-1/4.+1/99-1/100=1-1/100=99/100

因为1/(1*2)=1-1/2;1/(2*3)=1/2-1/3;1/(3*4)=1/3-1/4......以此类推
所以,原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)......+(1/99-1/100)=1-1/100=99/100
从这道题中,你会发现一个规律,那就是:1/(a*(a+1))=1/a-1/(a+1)(其中,a>0)

=1-1/2+1/2-1/3+1/3-1/4。。。。。。。。1/98-1/99+1/99-1/100=99/100

答案:99/100
解题方法:=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+......+(1/99-1/100)
=1-1/100
=99/100