初一数学论文300—400,急!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:21:02
初一数学论文300—400,急!
xZn#Yv\0nTUgV(?$I%Q#DjfaREps ` xaAȌ so?‘?N_u/BջovOɤ>}_ן?7҅Mtz=6;''Fҡy';f}#yT{7=u{Olw"8\־Kp .lAmuYRi~8խ*_KeaS:I`> m-tj5q/vJ 9  gy{?١5UѭнUǠ[ĹVRӫ<8l8;'`){:4:<3 ;ԶʅO'溆px$xr =:.@X'yϩ7TK2 5cV:^UR-t54u>=Oʮ*["ZW{P'-ΛO"wXíjR"u|]108~7oh(h|7Љj,9TRC ۶"W00Ϊin˟X}m+oi`q^X]W`~І&Qqaxya*|񬵎EXgGa KMb'CKʢvC&WaF}ZjU39'XR&%9X"$T:з.V\|&]H\TN-j-- UETW%*&xG7RXᬅcBP45z~^/;}nCmڗmڗI^3 H9 9ovRUS'?l70j4 lja̻Ao{J/qE]erbY5.s8S@Z"f1U*ff,f E>1Oeo1ݒq JpK{<ѻ=utF6YxճITL eAئA-b)^ xZmVTc3ICKd=4txr8౅:\=@h98`B5:A}DVQςc$3Bs&{ VV*gu.<-+X Rp3)g=(;&>"f~=e^CĞLa025vJCg VL%gT -Bƨ.kISc!w'UJH 7AHX#{'̈EwSáq]pXL2"T1ViGTƀ`$תVOV?<uJdd]՜d%}v;V;pcx_v)Ypީcuo'Me`P}. b[ *g,6)5kfX7F;gS`LXP ؛WlwlLHz60t|p Y=/FQ`I w4[,HV,zљkSA0DK'#Sg. l^D>DPDq?tN`Rp(:ts`B,w=rݽ_稏܄ӛz2Ӧy;)RM_ 7 adOir9X˛c H)yD ojܠ4e;UM0J-̠22$Ka*L^EӺ !rjm`{E[&2GeH-dԐ-?,#Rom%o9݈(A4#$wجFWSmJQGx <6?}4=DjM֥ T H|#`GmE\GfazuqûEݑQkSE5|W1К k7`|XyXXU[9gZ  u5ղF4 0xkXf3"YD#RA#;"ƜKC;q,Jjq%FFkF*;Ε]Aiy"i Z1e;9|¬\Pr~K8r 4&X(>o>:Ĩmra0(Rת^ й vMJ f z`a+m;fL WuȁE䃎T6,MH 0È(^1D?}ǖBYƲd0. u ٩ ['}d Vsq 篋W cDx%|q BcBzDD1-LDDTآQJG5N4KN{ܼZ4EomcB^;1p ?SmUjuso{z,>/dl"F$:ݜ"vDyƪ[k]TYpO=uf w#!Xuyo,PøMzrJD"N<}4EM `W Rkwн;1E#tUMSۄR1.?1Ri%E?2Ȝ"!Edxy*G>;D+7FVCrV Xg쉚4<,&#d_Ya xu㝂sf(]K]3$-6 yTy7.~ID cc'C N,~3Y,I?@3zD(J:nL:j(_Ɋ/yc 勿--ӧ=x=B|}?@h|M+h(>^;gQ|1@qSg(c? !;\ PyX4EBt&{??[>?Ż7'XH"В5މ>8Ő!<qi-dg) oXo ^8O/~xcl8"ݼoǯ~H6ia>FVߎlFkVk xQ`=`T^u)m?ģr? \bAWO[AXP ?7 9Oo94`[EMW`/J&FS怨4wΧ&|>ѶjŊ=ˍQ&mD Ԋɼ {6Gpv[Y6R lX^z7kÞ>wk'߼-t/"&]K"kUXAu+J"*fQ MxP2Xa} [r`¸Y8+ʼ R_.7+ox2Q

初一数学论文300—400,急!
初一数学论文300—400,急!

初一数学论文300—400,急!
我也正愁呢..给你个参考
关于“0”
0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.”
“任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同.105、2003年中的0指数的空位,不可删去.203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去.0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的.”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人.作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”.
生活中的数学
有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气.而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边.
奇妙的“黄金数”
取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点.这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”.
有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角.据研究发现,这种角度对植物通风和采光效果最佳.
建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数.人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处.音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美.
数0.618…还使优选法成为可能.优选法是一种求最优化问题的方法.如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间.为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止.但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!
“黄金数”在生活中竟有如此多的实例和运用.或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题.
美妙的轴对称
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴.
如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称.轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?
再仔细观察,不难发现有许多艺术品也成轴对称.举个最简单的例子:桥.它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥.个个都呈轴对称.中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称.再说个有名的:北京城的布局.这可是最典型的轴对称布局了.它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称.将轴对称用在艺术上,能使艺术品看上去更优美.
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的.耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确.可见我们的生活离不开轴对称.
数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完.我认为,生活中的数学能给人带来更多地发现.
不过估计现在也没有用了.那么少的分要写那么多字.

范文一篇,仅供参考,严禁抄袭! 著名数学家华罗庚说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学."特别是二十一世纪的今天,数学的应用更是无所不在.那么,我们如何从小打下坚实的数学基础,...

全部展开

范文一篇,仅供参考,严禁抄袭! 著名数学家华罗庚说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学."特别是二十一世纪的今天,数学的应用更是无所不在.那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合新一代的学生呢 我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿.那么,数学活动课就是让我们充分体现自主学习的一种教学方式.
活动课上,在老师的指导下,我们分成小组,通过自己动手去测量,拼凑,剪切,计算,去探索发现的规律,掌握数学知识.这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增.
例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴,拼凑变成一个我们已经会计算面积的图形呢 大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形.同学们通过观察,思考,认识到拼成的长方形的"长"和"宽",分别就是原来平行四边形的"底边"和"高".由此,大家终于自己找到了平行四边形面积公式为:S=ah.再比如,上《有余数的除法》这节课时,老师采用让同学们玩扑克牌的游戏,使大家很快理解和掌握了有余数的除法的计算规律,让大家在轻松愉快的活动中学到知识.
我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快.可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对.
今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析.这道题目是这样的:求3333333333的平方中有多少个奇数数字 分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变.使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字.这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数.即3×3=9→积中有1个奇数数字.33×33=1089→积中有2个奇数数字.333×333=110889→积中有3个奇数数字.3333×3333=11108889→积中有4个奇数数字.……
从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面.积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字.
做了这道题,我知道做数奥不能求快,要求懂它的方法.总之,我认为用活动课的方式上数学课,是我们小学生非常喜欢的.在课堂上,每个同学对知识的探索过程充满了好奇心,都迫切渴望通过自己的实验活动,去找到解决问题的方法.学习中,我们充分体验套了做学习的主人的快乐和自豪.希望老师们能多用活动课的方式来上数学课.这样,我们将会学的更扎实,更轻松,更灵活,更优秀.

收起