已知正数数列{an},其前n项和Sn满足10Sn=an^2+5an+6,且a1,a3,a15成等比数列,(1)求数列{an}的通项(通项为an=5n-3) (2)设bn=2/[an*a(n+1)],Sn是数列{bn}的前n项和,求使Sn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:39:36
已知正数数列{an},其前n项和Sn满足10Sn=an^2+5an+6,且a1,a3,a15成等比数列,(1)求数列{an}的通项(通项为an=5n-3) (2)设bn=2/[an*a(n+1)],Sn是数列{bn}的前n项和,求使Sn
已知正数数列{an},其前n项和Sn满足10Sn=an^2+5an+6,且a1,a3,a15成等比数列,(1)求数列{an}的通项(通项为an=5n-3) (2)设bn=2/[an*a(n+1)],Sn是数列{bn}的前n项和,求使Sn
已知正数数列{an},其前n项和Sn满足10Sn=an^2+5an+6,且a1,a3,a15成等比数列,(1)求数列{an}的通项(通项为an=5n-3) (2)设bn=2/[an*a(n+1)],Sn是数列{bn}的前n项和,求使Sn
第二问:因为an=5n-3,
而bn=2/[an*a(n+1)],
所以,bn=2/[(5n-3)*(5n+2)]
裂项,bn=2/5乘以[1/(5n-3) - 1/(5n+2)]
所以Sn = 2/5乘以[1/2-1/(5n+2)]
依题意Sn
(2) an=5n-3推出bn=2/[an*a(n+1)]*(a(n+1)-an)/5
=2/5*(1/an-1/a(n+1))
推出Sn=b1+b2+...+bn
=2/5*(1/a1-1/a2+1/a2-1/a3+...+1/an-1/a(n+1))
=2/5*(1/a1...
全部展开
(2) an=5n-3推出bn=2/[an*a(n+1)]*(a(n+1)-an)/5
=2/5*(1/an-1/a(n+1))
推出Sn=b1+b2+...+bn
=2/5*(1/a1-1/a2+1/a2-1/a3+...+1/an-1/a(n+1))
=2/5*(1/a1-1/a(n+1))
=2/5*(1/2-1/(5n+2))<2/5*1/2=1/5
n趋近无穷大时Sn趋近于1/5
所以Sn
收起
1.10Sn=an^2+5an+6(1)
10S(n-1)=[a(n-1)]^2+5a(n-1)+6(2)
(1)-(2)得:10an=an^2+5an-[a(n-1)]^2-5a(n-1)
[an+a(n-1)][an-a(n-1)-5]=0
an=a(n-1)+5(是等差数列)
10a1=a1^2+5a1+6
解得:a1=2或3
当a1=...
全部展开
1.10Sn=an^2+5an+6(1)
10S(n-1)=[a(n-1)]^2+5a(n-1)+6(2)
(1)-(2)得:10an=an^2+5an-[a(n-1)]^2-5a(n-1)
[an+a(n-1)][an-a(n-1)-5]=0
an=a(n-1)+5(是等差数列)
10a1=a1^2+5a1+6
解得:a1=2或3
当a1=2时,a3=2+2*5=12,a15=2+14*5=72(正好是等比数列)
当a1=3时,a3=3+2*5=13,a15=3+14*5=73(不是等比数列)
所以an=2+(n-1)*5=5n-3
2.
收起
(2)bn=2/[(5n-3)(5n+2)]=2/5[1/(5n-3)-1/(5n+2)]
Sn=b1+b2+....+bn
=2/5[1/2-1/7+1/7-1/12+....+1/(5n-8)-1/(5n-3)+1/(5n-3)-1/(5n+2)]
=2/5[1/2-1/(5n+2)]
因为Sn
当n趋近于正无穷事4-8/(5n+2)最大,最大趋近于4
所以m >=4