已知函数f(x)=x+1/x,判断f(x)在区间[1,+∞]上的单调性,说明理由.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:54:20
已知函数f(x)=x+1/x,判断f(x)在区间[1,+∞]上的单调性,说明理由.
已知函数f(x)=x+1/x,判断f(x)在区间[1,+∞]上的单调性,说明理由.
已知函数f(x)=x+1/x,判断f(x)在区间[1,+∞]上的单调性,说明理由.
直接运用单调性的定义.设1《X1
但是,求函数在某区间的单调性的一般方法则是运用定义.最后归结到讨论f(X2)-f(X1)的符号.另外,有可能在函数当中含有参数.这样,讨论单调性时更难,需要讨论参数的取值.
总结一下,求单调性,都是从单调性的定义出发,一般都能解决,不同的是难度大小.
深入学习数学定义,要会灵活运用.
这道题很简单的,你把y=x+1/x的图像画出来以后,就能看出来了
记住,x不能等于0,因为不符合定义域
1)求导。
f’(x)=1-1/x^2在[1,+∞]上大于零,故单调递增
但是楼主应该还没学求导
下面用定义证
对于t>0,x》1,有
f(x+t)-f(x)=t-t/(x(x+t))
由t>0,x>1,有(x(x+t))>1
t/(x(x+t))
于是对任意的a,b,当a>b》1时,f(a...
全部展开
1)求导。
f’(x)=1-1/x^2在[1,+∞]上大于零,故单调递增
但是楼主应该还没学求导
下面用定义证
对于t>0,x》1,有
f(x+t)-f(x)=t-t/(x(x+t))
由t>0,x>1,有(x(x+t))>1
t/(x(x+t))
于是对任意的a,b,当a>b》1时,f(a)>f(b),严格单调递增
收起