数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:47:19
数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,
x){6uӎՉyv/|msNFQNO6{᧩~O=/7>5(2dk;n_ֱI*ҧv6 =/g.y{QP+Hfľp}u@-F0RMʆI/?}v[Ch , ]q.Z[C{/.H̳

数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,
数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,

数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,
同除以2^(n+1)
得a(n+1)/2^(n+1)=an/(an+2^n)
倒过来得2^(n+1)/a(n+1)=1+[(2^n)/an]
[2^(n+1)/a(n+1)]-[(2^n)/an]=1
得证