已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f'(0)f'(1)>0,设a为常数,且a>0.已知函数f(x)的两个极值点为X1,X2,A(X1,f(X1)),B(X2,f(X2)),求证:直线AB的斜率K属
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:28:30
x){}KlD$=}/P({:m+⌵*⌴+^bf!H@ź}ig<]Ɏ]ifB@kh CM;D;v <1%@#XdǪg6y%P'Hh64A8i ӀtcӋz>{]=6y_7З6IEnG
Ԫkoog_`g3)_.i'&AK8Q(I;PԓKO;6 CF 1~ Km
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f'(0)f'(1)>0,设a为常数,且a>0.已知函数f(x)的两个极值点为X1,X2,A(X1,f(X1)),B(X2,f(X2)),求证:直线AB的斜率K属
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f'(0)f'(1)>0,设a为常数,且a>0.
已知函数f(x)的两个极值点为X1,X2,A(X1,f(X1)),B(X2,f(X2)),求证:直线AB的斜率K属于(-2a/9,-a/6].
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f'(0)f'(1)>0,设a为常数,且a>0.已知函数f(x)的两个极值点为X1,X2,A(X1,f(X1)),B(X2,f(X2)),求证:直线AB的斜率K属
由题意可得c=-a-b,c*(3a+2b+c)>0 可以得到-2a
已知二次函数f(x)=ax2 bx c(a不等于零,b,c属于R)满足:对任意实数
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)={f(x),x>0 -f(x),x
已知函数f(x),x属于R,若对任意实数a,b都有f(a+b)=f(a)+f(b).求证f(x)为奇函数.
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足对任意实数X,都有f(x)≥x,且当x属于(1,3)已知二次函数f(x)=ax^2+bx+c,(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤(1/8)(x+2)^2成立1.证明f(2)=
已知函数f(x)=ax²+2bx+1(a,b为实数),x属于R,F(x)=f(x),x>0或-f(x),x
已知函数f(x),x属于R,对任意实数a,b,有f(ab)=f(a)+f(b),且当x>1时,f(x)>0证明f(x)在(0,正无穷)递增
已知函数f(x)=x立方+x(x属于R)若a,b,c属于R,且a+b>0,b+c>0,c+a>0,试证明:f(a)+f(b)+f(c)>0
函数fx,x属于R,若对于任意实数a,b都有f(a+b)=f(a)+f(b),求证f(x)为奇函数
已知实数a不等于0函数f(x)={ax(x-2)^2}x属于R若对任意x属于[-2,1]不等式f(x
已知二次函数f(x)=x^2+2bx+c(b、c均属于R) (1)若f(x)≤0的解集{x|-1≤x≤1},求实数b、c的值
已知函数f(x)=cos(x-2派/3)-cosx『x属于R』1求函数f(x)的最小正周期及单调递增区间 2三角形ABC内角A、B、C的对边长分别为a,b,c若f(B)=-根3/2.b=1.c=根3.求a的值 第二题 已知函数f(x)是定义在实数集R上
已知二次函数f(x)=ax^2+bx+c(a,b,c属于R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤1/8(x+2)^2成立,(1)证明f(2)=2(2)若f(-2)=0,f(x)的表达式
已知二次函数f(X)=ax2+bx+c(a,b,c属于R)且同时满足:1)f(-1)=0 (2)对任意的实数恒有x≤f(x)≤(x+1/2求f(1)求f(x)表达式x≤f(x)≤(x+1)2/4 注 2 为平方答案貌似谁确定的·
已知函数f(x)=x的三次方+x(x属于rR),若a,b,c属于R,且a+b>0,b+c>0,c+a>0,试证明:f(a)+f(b)+f(c)>0.
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:对于任意实数x,都有f(x)>=x, f(x)
已知函数f(x)=[(x-a)^2](a-b) (a,b属于R,a
已知函数f(x)=x^ 集合A=(x|f(x+1)=ax,x属于R),且A并正实数=正实数,则实数a的取值范围是A(0,正无穷) B(2,正无穷) C]4,正无穷) D(负无穷,0)并]4,正无穷)]是闭区间
函数 (10 13:22:26)已知2次函数f(x)=ax^2+bx+c(a,b,c属于R)且同时满足以下两个条件 1.f(-1)=0 2.对任意的实数恒有x<=f(x)<=((x+1)/2)^2 求f(1)= 求f(x)的表达式