设f(x)=∫(x^2到0) sint/t dt ,求 ∫(1到0 )xf(x) dx=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:34:45
设f(x)=∫(x^2到0) sint/t dt ,求 ∫(1到0 )xf(x) dx=
x @E_e ”kQB6!bQh(̠MPA,B]b>Gߢ h]{Ϲ\6PZyҝB:cIENbY.ҲSɬ,YF6ƶi{tXfϊ(оPb Thw`Zz.^XSvko0f4п?*gC^1$?"KS84cZ

设f(x)=∫(x^2到0) sint/t dt ,求 ∫(1到0 )xf(x) dx=
设f(x)=∫(x^2到0) sint/t dt ,求 ∫(1到0 )xf(x) dx=

设f(x)=∫(x^2到0) sint/t dt ,求 ∫(1到0 )xf(x) dx=
第一个是变限积分,得到f(x)= 2sin(x^2)/x,然后带到第二个里面就简单了,
变成2 ∫(1到0 )sin(x^2)dx刚才弄错了,这个貌似不好算