一个自然数恰好有18个约数,那么它最多有___个约数的个位是3.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:45:33
一个自然数恰好有18个约数,那么它最多有___个约数的个位是3.
xTn0}JX0G2жvK-ʈҾ턷qߦ\|}.NS(x;gdjSTE0ldqCjۺUR)q &ȿzAwy!`f4k{YٙE k*&&^y4ӖcCy]DxES=igÙmy&&pƜnXK$D 5=-ՃIN= %rpdg$7ܥ25Vgue4B#,Xb#̗,Q:up7#SA8v`RmF'Ƚ fw˕pg JS\Hsx;FjUq

一个自然数恰好有18个约数,那么它最多有___个约数的个位是3.
一个自然数恰好有18个约数,那么它最多有___个约数的个位是3.

一个自然数恰好有18个约数,那么它最多有___个约数的个位是3.
9个.
由18=2*9=3*6=2*3*3,可知N可以有1个,2个或3个不同的质因子,即
N=p1^17,N=p1*p2^8,N=p1^2*p2^5,N=p1*p2^2*p3^2,其中p1,p2,*p3互不相同,
要使个位是3的因数尽可能多,如果只含有1个质因子,此时任取个位数是3的质数则N的个位为3的因数最多,即在N=p1^17的情况下,经验证有5个满足条件的因数(p1=3,3,3^5,3^9,3^13,3^17).如果含有2个不同的质因子,即N=p1^2*p2^5或N=p1*p2^8的情况下,经验证前者为6个(取p1=3,p2=31),后者为9个(p1=3,p2=31),如果含有3个不同的质因子,即N=p1*p2^2*p3^2,经验证满足条件的因数为5个(取p1=3,p2=13,p3=31).故个位为3的因数最多是9个,此时可取N=3*31^8,其9个约数为:3,3*31,3*31^2,...,3*31^8.
设N=pq^n,则个位数为3的约数最多为n+1个,显然当p取个位数为3的素数,q取个位数为1的素数,此时个位数为3的约数有p,pq,pq^2,...,pq^n为n+1个个位数为3的约数.这是N的全部约数,所以n+1个是最多的.

一个自然数恰好有18个约数,那么它最多有多少个约数的个位是3. 一个自然数恰好有18个约数,那么它最多有___个约数的个位是3. 一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有个约数? 一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有多少个约数? 一个自然数恰好有18个因数,那么它最多有几个因数的个位是3? 质数、合数的约数个求法一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有多少个约数? 一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有( )个约数.如题, 一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有(  )个约数.要技巧,要放法,要讲解, 一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有几个约数?我已提供正确答案. 一个自然数恰好有18个因数,那么它最多有几个因数的个位是3?(奥数的解答过程)没说这个自然数是多少! 可以稍微把步骤简单点嘛,毕竟是小学奥数题 一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有几个约数?我的答案作了修改,不含有1与本身还是有解的.34个 如果自然数A和B各自恰好有5个不同的约数,那么A*B有多少个不同的约数?(希望有过程) 有一个自然数,它有3个不同的质因数而且有12个约数.这个自然数最小是多少? 有一个自然数,它有3个不同的质因数而且有12个约数.这个自然数最小是多少? 有一个自然数,它能被5和49整除,且它有10个约数,问这个自然数是多少 已知自然数a有2个约数,那么3a有多少个约数? 已知a(自然数)有3个约数,那么4a有多少个约数 一个偶数,它恰好有7个约数,这个数是______?