已知数列{An}An+2=An+1+An且A1=A2=1求数列{An}通项公式(1 1 2 3 5 8 13 21 34.)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 03:50:15
已知数列{An}An+2=An+1+An且A1=A2=1求数列{An}通项公式(1 1 2 3 5 8 13 21 34.)
xUn@y HyH)H}EY4[[TJ(m/6OB=c$}[f=;|nh b"dáD4 ,'$[!/-zN;Fi4pIE߆!x;kGP!կa-a Gp8l?J㑌Q+0/r/cF. LcxXdrgDAoRftQHF* τ] 8%:m[CR1qE[jmiolZ5`,0Se(kDo)0(xJ|DTYڞ'0AQ}q:jM;va9:!]_E [DMg@P%!=]wLQ'~i|vJͲ;+٩ժmhgM+f[;} c5GSe*s oj7 , 1{XuzE75z)$ I Z#h89p&|ݙS6\dn>Tx܍d3

已知数列{An}An+2=An+1+An且A1=A2=1求数列{An}通项公式(1 1 2 3 5 8 13 21 34.)
已知数列{An}An+2=An+1+An且A1=A2=1求数列{An}通项公式(1 1 2 3 5 8 13 21 34.)

已知数列{An}An+2=An+1+An且A1=A2=1求数列{An}通项公式(1 1 2 3 5 8 13 21 34.)
裴波那契数列:1,1,2,3,5,8,13,...
裴波那契数列递推公式:F(n+2) = F(n+1) + F(n)
F(1)=F(2)=1.
它的通项求解如下:
F(n+2) = F(n+1) + F(n) => F(n+2) - F(n+1) - F(n) = 0
令 F(n+2) - aF(n+1) = b(F(n+1) - aF(n))
展开 F(n+2) - (a+b)F(n+1) + abF(n) = 0
显然 a+b=1 ab=-1
由韦达定理知 a、b为二次方程 x^2 - x - 1 = 0 的两个根
解得 a = (1 + √5)/2,b = (1 -√5)/2 或 a = (1 -√5)/2,b = (1 + √5)/2
令G(n) = F(n+1) - aF(n),则G(n+1) = bG(n),且G(1) = F(2) - aF(1) = 1 - a = b,因此G(n)为等比数列,G(n) = b^n ,即
F(n+1) - aF(n) = G(n) = b^n --------(1)
在(1)式中分别将上述 a b的两组解代入,由于对称性不妨设x = (1 + √5)/2,y = (1 -√5)/2,得到:
F(n+1) - xF(n) = y^n
F(n+1) - yF(n) = x^n
以上两式相减得:
(x-y)F(n) = x^n - y^n
F(n) = (x^n - y^n)/(x-y) = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5

你好,你要的答案是:
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2
则an=C1*X1^n + C2*X2^n
∵a1=a2=1
∴C1*X1 + C2*X2
C1*...

全部展开

你好,你要的答案是:
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2
则an=C1*X1^n + C2*X2^n
∵a1=a2=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)

收起