在如图的扇形中正方形的面积为30平方厘米,求阴影面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:58:31
在如图的扇形中正方形的面积为30平方厘米,求阴影面积
xZrJ~%$Yv*-آ0$v$!qp`Cbg_GPwWډ׹(f5UT NVq9=*H2-);08=^(uVЭbl{I<8'rúvG\qi6K.'\mHyRq{M^]Iq%$x.T&7?a h}28(.c%%|U&c`ᱶTqO]Y_va=Ve3e9 Izmn_=#A ?!8 Yn0^xbF:G<7' u0P,Zh&l:㸫\a2ю ӃPFl@B{@z3&9x@*6vh"5UtJQ$򢠕)}W7Ӝdž@V2z T"H@ɸaK!->#ƠVGӮ>:Mr;E}2, j/%/NȻѼQ2q*^@uxEz3K9(QsBѣ/"2T&Jq2WMQ<\0,Z$"MIJdMxbery0^}kxs@˃Ϭ!4H#ʷEty߰P5J_Y` X9+ô"{ʯkt]A>S%*+ NINeXtS,L2p/oM-YNXAL[.XiI2,(-@%Vl`4?Fl85%xO QCa)/[`Wh(qi I%jvdke"H5-Aɒ윽Vo:&VRUJf j]Y%_!]TWśxLdibS.RN7 l0/+< }dâb߾>߇-" .Rmi(^y[w{9WaS&Y~9}{ECS\yM:qXYhigP3+\Rq?OZI*Iăl;N7ck;Md$452v;wnפ(؞زyJ ]i&}iNsBO*e[j IaIyQ?Rt}SFStm&Es2E+bfY[=/?H@wl X;y,J vYl@;_/ ^EnZ*z T3"]uU@9%u]<~IDՇbho.WFoo@n 0=8!$pF;#x*; =bBѥ?$ IaWT爁[:1hNRMPH ZH\~3^q ILUE[Wh"6%; n1n4Kv=޾9vrk\\H-v9l-•H vod_oǒ1+,A1S ONe0# x8ae~R

在如图的扇形中正方形的面积为30平方厘米,求阴影面积
在如图的扇形中正方形的面积为30平方厘米,求阴影面积

在如图的扇形中正方形的面积为30平方厘米,求阴影面积
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易.有些图形可以根据“容斥问题“的原理来解答.在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积.
例题1.
如图20-1所示,求图中阴影部分的面积.








45○
10




45○

10










20-2
20-1


【思路导航】
解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图20-2),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米
【3.14×102×-10×(10÷2)】×2=107(平方厘米)
答:阴影部分的面积是107平方厘米.
解法二:以等腰三角形底的中点为中心点.把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差.









45○








20-3

(20÷2)2×-(20÷2)2×=107(平方厘米)
答:阴影部分的面积是107平方厘米.
练习1
如图20-4所示,求阴影部分的面积(单位:厘米)
如图20-5所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形.求红蓝两张三角形纸片面积之和是多少?




C
45○



49
29
49







29
49
6
45○




B
45○

20-5
A
D

20-4

例题2.
如图20-6所示,求图中阴影部分的面积(单位:厘米).







a
4

减去


20-7
6

20-6

【思路导航】
解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积.如图20-7所示.
3.14×62×-(6×4-3.14×42×)=16.82(平方厘米)
解法二:把阴影部分看作(1)和(2)两部分如图20-8所示.把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积.








(2)
(1)









20-8

3.14×42×+3.14×62×-4×6=16.28(平方厘米)
答:阴影部分的面积是16.82平方厘米.


A
练习2

A
B
C
D












2

60○


20-11
20-10
B
20-9
C
如图20-9所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米).
如图20-10所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米.以AC、BC为直径画半圆,两个半圆的交点在AB边上.求图中阴影部分的面积.
如图20-11所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米.求图中阴影部分的面积.

例题3.
在图20-12中,正方形的边长是10厘米,求图中阴影部分的面积.






















20-14
20-13
20-12

【思路导航】
解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图20-13所示),再用正方形的面积减去全部空白部分.
空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)
阴影部分的面积:10×10-21.5×2=57(平方厘米)
解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图20-14所示),而8个扇形的面积又正好等于两个整圆的面积.
(10÷2)2×3.14×2-10×10=57(平方厘米)
答:阴影部分的面积是57平方厘米.
练习3

求下面各图形中阴影部分的面积(单位:厘米).






3
4
10
10

5

20-17
20-16
20-15

例题4.
在正方形ABCD中,AC=6厘米.求阴影部分的面积.

D
C
B
A
D
C







B
A
20-18


【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道.但我们可以看出,AC是等腰直角三角形ACD的斜边.根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图20-18所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方.这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算.
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)
阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)
答:阴影部分的面积是3.87平方厘米.
练习4
如图20-19、20-20所示,图形中正方形的面积都是50平方厘米,分别求出每个图形中阴影部分的面积.
如图20-21所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧.求图形中阴影部分的面积(试一试,你能想出几种办法).











20-21
20-20
20-19

例题5.
在图20-22的扇形中,正方形的面积是30平方厘米.求阴影部分的面积.







A
B










A
B

20-22


【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积.可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系.我们以扇形的半径为边长做一个新的正方形(如图20-23所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60.这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算.
3.14×(30×2)×-30=17.1(平方厘米)
答:阴影部分的面积是17.1平方厘米.
练习5
如图20-24所示,平行四边形的面积是100平方厘米,求阴影部分的面积.
如图20-25所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积.

A
A
D
如图20-26所示,半圆的面积是62.8平方厘米,求阴影部分的面积.








O
C

C
B
O

45○
B

20-26
20-25
20-24
答案:
练1
如图答20-1所示,因三角形BCD中BC边上高等于BC的一半,所以阴影部分的面积是:62×3.14×-6×(6÷2)×=5.13平方厘米
如图答20-2所示,将红色直角三角形纸片旋转900,红色和蓝色的两个直角三角形就拼成了一个直角边分别是49厘米和29厘米的直角三角形,因此,所求的面积为:
49×29×=710.5平方厘米
练2
如图答20-3所示,可以看做两个半圆重叠在一起,从中减去一个三角形的面积就得到阴影部分的面积.
(2÷2)2×3.14××2-2×2×=1.14平方厘米
思路与第一题相同
(4÷2)2×3.14×+(2÷2)2×3.14×-4×2×=3.85平方厘米
如图答20-4所示,用大小两个扇形面积和减去一个平行四边形的面积,即得到阴影部分的一半,因此阴影部分的面积是:
【(82+62)×3.14×-8×5.2】×2=21平方厘米
练3
如图答20-5所示,阴影部分的面积等于四个半圆的面积减去一个正方形的面积,即:
(10÷2)2×3.14××4-10×10=57平方厘米
如图答20-6所示,阴影部分的面积等于半圆与扇形面积的和,减去一个三角形的面积,即:102×3.14×+(10÷2)2×3.14×-10×10× =28.5平方厘米
如图答20-7所示,整个图形的面积等于两个半圆的面积加上一个三角形的面积,用整个图形的面积减去一个最大半圆的面积就等于阴影部分的面积,即:
(4÷2)2×3.14×+(3÷2)2×3.14×+4×3×-(5÷2)2×3.14×=6平方厘米
练4
(1)因为圆的半径的平方等于正方形面积的,所以阴影部分的面积是
(50÷4)×3.14=39.25平方厘米
(2)因为扇形半径的平方等于正方形的面积,所以,阴影部分的面积是
50-50×3.14×=1075平方厘米
提示:仔细阅读例4,仿照例4先求扇形半径的平方,然后设法求出阴影部分的面积.
10×(10÷2)×3.14××2-10×(10÷2)=28.5平方厘米
练5
如图答20-8所示,连结AC可以看出平行四边形面积的一半等于圆半径的平方,所以,阴影部分的面积是100÷2×3.14×-100×=14.25平方厘米
如图答20-9所示,
(1)因为三角形ABC的面积等于小圆半径的平方,所以小圆的面积的一半是45×3.14×=70.65平方厘米
(2)因为大圆半径的平方等于三角形ABC面积的2倍,所以大圆的面积的是45×2×3.14×=70.65平方厘米
(3)弓形AB的面积是70.65-45=25.65平方厘米
(4)阴影部分的面积是70.65-25.65=45平方厘米
3、 如图答20-10所示,
(1)半圆半径的平方是62.8×2+3.14=40平方厘米
(2)三角形AOB的面积是40÷2=20平方厘米
(3)阴影部分所在圆的半径的平方是40×2=80平方厘米
(4)阴影部分的面积是80×3.14×-20=11.4平方厘米

图在哪呢??

在如图的扇形中正方形的面积为30平方厘米,求阴影面积 如图所示阴影部分的面积是66平方厘米图中正方形的面积为多少平方厘米 如图所示,图中正方形的面积为12平方厘米,阴影部分为( )平方厘米 如下图,图中正方形的面积是10平方厘米,求阴影部分的面积. 如下图,图中正方形的面积是10平方厘米,求阴影部分的面积. 已知图中正方形的面积为10平方厘米,求阴影面积(有图) 下图中正方形的面积为30平方厘米,求阴影面积 在下图中,有两个完全相同的等腰直角三角形.已知,左图中正方形的面积为90平方厘米,则右图中正方形的面积是( )平方厘米.十万火急呀!大哥大姐们行行好!对了的话有悬赏! 图中正方形的面积是30平方厘米,求阴影部分的面积急 右图中正方形的面积是8平方厘米,圆的面积是( )平方厘米正方形占圆形的4/1,正方形还有一点露在外面.图中正方形面积是10平方厘米,圆的面积是多少平方厘米? 右图中正方形的面积是36.5平方厘米,平行四边形的的面积是( )平方厘米 如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为( 如图所示阴影部分的面积是75平方厘米,则图中正方形的面积是多少平方厘米 图中正方形的面积是20平方厘米,圆的面积是多少平方厘米 已知图中正方形的面积是9平方厘米.这个圆的面积是多少平方厘米? 图中正方形的面积是20平方厘米,圆的面积是多少平方厘米? 已知图中正方形的面积是10平方厘米,这个圆的面积是多少平方厘米? 如果图中正方形的面积是24平方厘米,那么,圆的面积是多少平方厘米