等差数列{an}的前n项和Sn=m,前m项和Sn=n(m>n),求前m+n项和Sm+n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:47:54
xRn@/m9q#/QKdBJ(MFjB&@qy8_wY3&(HeWɋ9ܱu-}Bʣ>D1`IT%uUج)`};' F~jwl`q=
Gx`8>Q%r+JuKqAɫn{TbPͬ.aia=KmqEWyJА#TlYWE#7s¿vxtj_hvai#'8A]KXGj \z1(![^tәeH!*eA~Ozp<~ܬI-!ȳynqHdN0sܑ*i,2eb#{KLJi;+h;|Q,(c~9n߮,lcb͗1Cj(ef*
02#N$P+Cw.hT5_zֶؙ0r`O])~
Li۳*~(O'v
等差数列{an}的前n项和Sn=m,前m项和Sn=n(m>n),求前m+n项和Sm+n
等差数列{an}的前n项和Sn=m,前m项和Sn=n(m>n),求前m+n项和Sm+n
等差数列{an}的前n项和Sn=m,前m项和Sn=n(m>n),求前m+n项和Sm+n
根据等差数列{an}的前n项h和公式和性质 :Sm-Sn= a(n+1)+……+am=n-m
( a(n+1)+am)(m-n)/2=n-m ( a(n+1)+am)/2=-1
Sm+n= ( a1+a(n+m)(m+n)/2= ( a(n+1)+am)(m+n)/2=-(n+m)
Sn=m Sm=n
联立 得方程组
na1+n(n-1)d/2=m
ma1+m(m-1)d/2=n
可以解出a1 和d
问题就解决了,过程你自己算吧
Sn/n是关于n的一次函数,利用斜率相等(Sn/n-Sm+n/(m+n))/(n-m-n)=(Sn/n-Sm/m)/n-m,解出即可。我是用手机打的,不知你能否看懂?
因为Sn=a1+(n-1)d=m;Sm=a1+(m-1)d=n;
所以m-n=Sn-Sm=(n-m)d,d=(m-n)/(n-m);
m+n=Sn+Sm=(m+n-2)d+2a1=(m+n-2)(m-n)/(n-m)+2a1,a1=m+n-1;
所以Sm+n=a1+(m+n-1)d=0(将a1,d代入计算)
等差数列{an}的前n项和Sn=m,前m项和Sn=n(m>n),求前m+n项和Sm+n
等差数列an的前n项和为Sn,已知Sm=a,Sn-Sn-m=b,m、n属于自然数且n>m,求Sn?
若等差数列{An}的前m项和为Sm,前n项和为Sn,且Sm:Sn=m²:n²,则Am:An=?
{an}是等差数列前n项和Sn已知Sm=a Sn-Sn-m=b 求Sn
关于等差数列前n项和的问题思路 例题 等差数列中{an}的前n项和为Tn,{bn}的前n项和为Sn Tn/Sn=2n/m+1 求a8/b8 ,an/bn
等差数列an前n项和为Sn=m,Sm=n,求Sm+n的值
已知等差数列{an}的前n项和为Sn若Sn=Sm(n不等于m)则Sn+m=?
已知等差数列{an}的前n项和为Sn,若Sm=n,Sn=m,(m≠n)则Sm+n=
设Sn是等差数列{an}的前n项和,求证:若正整数m,n,p成等差数列,则Sm/m,Sn/n,Sp/p也成等差数列.
设数列{an}是等差数列,它的前n项的和Sn=m,它的前m项和Sm=n,求数列{an}的前m+n项和Sm+n
已知等差数列an的前n项和为sn,且sm=sn(m不等于n)求s(m+n)
在等差数列{an}中,设前m项和为Sm,前n项和为Sn,且Sm=Sn,m不等于n,则Sm+n=?
等差数列AN的前n项和为Sn,若S2m-1/2m-1=10,则am=
数学题设数列An等差数列前n项和为Sn若m不等于n,Sn=m平方,Sm=n平方,求S(m+n)
等差数列{an}前n项和为Sn,m≠n,Sn=m²,Sm=n²,求S(m+n)
已知等差数列{An}前n项和为Sn,且Sm/Sn=m^2/n^2,m≠n,A1=1,则An
等差数列〔an 〕的前n 项和为Sn,已知Sm等于a ,Sn 减Sn-m 等于b ,n ,m 是正的等差数列〔an 〕的前n 项和为Sn,已知Sm等于a Sn 减Sn-m 等于b n m 是正的自然数。n 大于m 求Sn
若Sm,Sn分别为等差数列{an}的前m项,前n项和,且Sm=Sn=t,(m不等于n),则a1+a(m+n)=