有没有高中物理静电场公式及应用的题型整理?例如:库仑定律如何应用?力的性质又是什么?场强题型有哪些?电场线相关内容有哪些?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:26:51
有没有高中物理静电场公式及应用的题型整理?例如:库仑定律如何应用?力的性质又是什么?场强题型有哪些?电场线相关内容有哪些?
x}o[W"`i %vGU yNGig$c$@>PDQȦ,k_ͱERE P=?(|/s}q$]Q|{ιg?^oQ2yYo9T:?5:LZɘUL;MgfZ'w1w1k}U|^.MX&e,^M+_f˥pM}XTs͍Z(g'k:g6o Xa+SWW<__ÿ=2kМŵJ6 p)=?;]WUg#AO`e3?ZOw|ו>uppʯcH $r1_%&wɜځ+&%0]E_W_Wè5-: 4-r4{P Lb; /0+ r+W{}]/pwgtZ{ڿ=*zQ[`&yZ.g' ؈r>֮A*V2[qMr6N<_[5T:<;B]hA^ vcQf\JfLsH{|WY\xQq̐\bKVb *cUx=Y4Dׯ΀B.✣;@/o)0}ESSj`4WɮQF=" ̑+xyH0X0t!-w!E?kP?=weK]֫tULE+9d-g5R |AK,H/P|Vw2-Tk`Ɗ-?Z㇀?1v;CԾ~ }"ll7p XfWGgnU=E0Rw'mE# R=,Ag< <ayi`UC&P " cźjQs niMptDE,٦ |VW=Bܑqw Q҅m>2^bv*jD`Mo*? WVP_q6򻰜0 sh\9yXhY_+zݟim8nE?YT^"{fmdX[ wޏ7skqGm]Wj|Y@X\ZZkd-V'#q:lo>"{bgʷ/EI$e6P7(vٴR"g6JWج"#+FrXed,0 #VWv6֮6C97~ӜJeMX V.餞ډ:.kE#xec@QpYƭTv5ΰ촕h>oH l i J,LHJN8ل$|hVtS䋦:[و^].:a?w(a1Mü^xBæ[4O+Ydr"O?{2uֿxwd;2K#5?8gmƊ@3WZr.5ꌕF  ;9;|7@F#q!"_

j|l~Pɮ@8xC޿f K6C,p'ijghl 0K:ӛQ? <կ|¹K9 h%nȕ+r@DόZB ~NB΍/CapKEqIyM,)cnI_.~E}iAӈ/ۍ=kDF Ջ#jFĬIT}^P";h jNő{-5y=bk_D(yq}N]_4f?'m 8ݵt"a"{!utbC$'E} .IJ5 *ːJk.g'3Ilsџ: cStiVb|+B:0I󮚜Lm5fPp@^;l>hY#g9CA_>^.l[kSc#@NЛ1{~\گUƟZX UȚ.U'&Gcv,&.eB|8SV3[`br\,dw@&`R:$eF]௜8c.}0t0M]! N"y_@ pC8Xi\Ď'{,5$)H1d?! Zi$LV  CrB;[9lV M.8`[Âؙr>LZAMsY#fk^;45S$`ߕDs bi .]IV{bk ''a%T&د`r5BEcuT߼_?ғ'z&TN WPKR+_Mo?8G-k^VG+}< 0x1@+"kvŎ"fN^ B,X8;%0u-qZ':[i,]GSF5?!#N/je'ҕK;qFg'*=r{5|N7Ã5jW \cfw'8 * ttw$&+|DzzyRD^s 0M-} ]ty: - ix^Ÿ!XOIpz*\$(JP'9e歬Bel?, Qf(q[$lcQ: >ncAɕwOŬ,-0$$X G 'CvJNS4gs440 ~Ȅ(+AE犃pC B[H_5H^ Tgc b74"P8T/(u1 P0VڭɝgB:7kB~eZ$-|Ʉd<Sȿ^$"_Lsc 5eq\O9@ נ-R6>Dh85|$q۳b)>RZ'GZq1 ɂt:aG_ߥjg"]- =zIBH ZhvnP^"tPAIД+6} B_f=hzC*OC`ܨ/Qd |+!b :%չ0m}׳1svMJ~kEÄΪ{1E5#XRd"SWH k׸v8CBWfnbEHۥtUґ!<\ɼ=>Z}|KY7/84pMԂҫ[ܱo#675*Lt$Hz)ާhq{2[`B'lӳq zBYE#)&ҼsNg:yj?_@12׬p\T8qL_Bk]IVqchKi+|(RJ:}Ʌ_G("]-Q/&]$(NvyHئ*#?huPZ;=gaIpDY? bc>_i}# c@&kW9CV㥠m+j]"Zq{cxQȥZBZgoY2Lzdut&h%n1' >eN]#殞#?J~n_A(N1˙fsLqhO)iUthNhe%f`URԹꪼ3TR(2몽lQ1iNiɡ@)EnI#,{ؾ1td]4>ҧhkx8PnfUjo{4@8*E-VH6HhTScՑ"'n`QScZLܦ-KE_aVU7O[[/ vYtP r7sTW7&עwLhC܀{0$7s{al ,:.#^bPN mOa:GO;dZJ[б-~wqLj]Ti4Ikk-2=w;"\L3x R>G:rQ{xΰHA<\u.yU5uTXxo9nc4Ď4Sk3 `T!?mDcX'GQ#RjQn(K8L,R]3Ҁk"v5Hz$*JApT^Myǩ!6/GutCHP:l#+fXgKK9?J*Ddg.RQf6//q8;\Y1;W %h%֎d ee{줲 B^栲815)%/+G uH-]~XlcVz{WpSG3HuR<5нh .TTKS+1 p H?ܼBEP}"L8o%#`_kPTz=fA /av{-Q5\[9JCXEHBٴhE&ˀ&,NwnBPIT-˲/o^+>7DR84_W 6`/#KɭWQcrh)4,|DJQ( *z QGH.ex&+9&wy_iP:hhJ m ^RE qQL UuLתP{\obOFe *Wm~E_cfu: [c/xI\M3Pl FR~Hu};{!)HYвZhH+4mcUs RH|o3ă "'U"FEPZ:hwã@~*Bw S3)x㓀{DĚ3vq[{E)=7w:$_~j,F#,D3ƫ iP+·p (zh_R:>JD-'#{ւ!+'P`\ x+"7^O̫((I:5.ӽLZQK*=i ~T._tpZ^қvFX^ Q I1̱PZ@Һ,&f.ĹMDt=:_LtjjTtތj4̵Vvuh/FD`X-TknHb,ąmbG 53ua;̋4kQ tT><4/Z(W,>7T~`+q7L_jP7\)߽ 94% 7+̓+"RNJN<{JdJ>.,'U {@ZP u}(6qdR7#݁=IMb 13!) 7o+iIuz Ę9ɮY!:gT27i"Q2`5y>^3ɨjX_GDzY `+z P+ї~#gs7؅yFjd4eZO I.A1^uk ¥(z3ߥM6V?z Eݒa})ӌAc:~ҙsm[-jR=OSH/4<F)ӂ&i$[&O&;mI\!/ z֫'i4ޙ z5|Q 1qZ+WJr qp <3y"MrhiRA|\ܛՌbNt Xm풪W8㳔wupci:NL1BM s.fŤ\Ij1 0Qe8/8`FFu8/Py}77x}fԒ 7S^ڻ4o;MI#>$[$ǖ;R[syOR%VWR].y2d2f7F4bތ/NotZt cG`54R?sVvi{,R |j"nZk) 31}SqRɯbRbvΑꐾF2 %ObPՂT5At>Vztp;`@)7c'dj*+7b HCGaDh {'IY5#rU~|qNgz¬Gm |O(&*kh]g+izTN{O t< t|?}떖'ߨ\C u)v`\}%Dgkks۲Ϲh|rYݐH>Pn]V

有没有高中物理静电场公式及应用的题型整理?例如:库仑定律如何应用?力的性质又是什么?场强题型有哪些?电场线相关内容有哪些?
有没有高中物理静电场公式及应用的题型整理?
例如:库仑定律如何应用?力的性质又是什么?场强题型有哪些?电场线相关内容有哪些?

有没有高中物理静电场公式及应用的题型整理?例如:库仑定律如何应用?力的性质又是什么?场强题型有哪些?电场线相关内容有哪些?
静电场知识点总结:
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕.

一楼的很详尽了...

一、公式
1.两种电荷、电荷守恒定律、元电荷: (e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中) F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2, Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们连线上,作用力与反作用力,同种电荷互相排斥,异种电荷...

全部展开

一、公式
1.两种电荷、电荷守恒定律、元电荷: (e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中) F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2, Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引
3.电场强度:E=F/q(定义式、计算式)
{E:电场强度(N/C)是矢量(电场的叠加原理)q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB= a- b, UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=qEd {WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),
UAB:电场中A,B两点间电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化Δ AB= B- A {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化Δ AB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器电容C=εS/4πkd (S:两极板正对面积,d:两极板间的垂直距离,ε:介电常数)
电容器两种动态分析:①始终与电源相接u不变;②充电后与电源断开q不变.距离d变化时各物理量的变化情况
14.带电粒子在电场中的加速(Vo=0): W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平抛运动 :垂直电场方向: 匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
平行电场方向: 初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:①两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
②静电场的电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;变化电场的电场线是闭合的:电磁场.
③常见电场的电场线分布要求熟记,特别是等量同种电荷和等量异种电荷连线上及中垂线上的场强
④电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
⑤处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线垂直于导体表面(距导体远近不同的等势面的特点?),导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
⑥电容单位换算:1F=106μF=1012PF;
⑦电子伏(eV)是能量的单位,1eV=1.60×10-19J;
⑧其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面
二、基本方法
本章涉及到的基本方法有,运用电场线、等势面几何方法形象化地描述电场的分布;将运动学动力学的规律应用到电场中,分析解决带电粒子在电场中的运动问题、解决导体静电平衡的问题。本章对能力的具体要求是概念准确,不乱套公式懂得规律的成立条件适用的范围。从规律出发进行逻辑推理,把相关知识融会贯通灵活处理物理问题。
三、错解分析
在本章知识应用的过程中,初学者常犯的错误主要表现在:不善于运用电场线、等势面为工具,将抽象的电场形象化后再对电场的场强、电势进行具体分析;对静电平衡内容理解有偏差;在运用力学规律解决电场问题时操作不规范等。
例1 如图8-1所示,实线是一个电场中的电场线,虚线是一个负检验电荷在这个电场中的轨迹,若电荷是从a处运动到b处,以下判断正确的是: [ ]
A.电荷从a到b加速度减小
B.b处电势能大
C.b处电势高
D.电荷在b处速度小
【错解】
由图8-1可知,由a→b,速度变小,所以,加速度变小,选A。因为检验电荷带负电,所以电荷运动方向为电势升高方向,所以b处电势高于a点,选C。
【错解原因】
选A的同学属于加速度与速度的关系不清;选C的同学属于功能关系不清。
【分析解答】由图8-1可知b处的电场线比a处的电场线密,说明b处的场强大于a处的场强。根据牛顿第二定律,检验电荷在b处的加速度大于在a处的加速度,A选项错。
由图8-1可知,电荷做曲线运动,必受到不等于零的合外力,即Fe≠0,且Fe的方向应指向运动轨迹的凹向。因为检验电荷带负电,所以电场线指向是从疏到密。再利用“电场线方向为电势降低最快的方向”判断a,b处电势高低关系是Ua>Ub,C选项不正确。
根据检验电荷的位移与所受电场力的夹角大于90°,可知电场力对检验电荷做负功。功是能量变化的量度,可判断由a→b电势能增加,B选项正确;又因电场力做功与路径无关,系统的能量守恒,电势能增加则动能减小,即速度减小,D选项正确。
例2 点电荷A和B,分别带正电和负电,电量分别为4Q和Q,在AB连线上,如图8-2,电场强度为零的地方在 [ ]
A.A和B之间 B.A右侧
C.B左侧 D.A的右侧及B的左侧

【错解】
错解一:认为A,B间一点离A,B距离分别是2r和r,则A,B

错解二:认为在A的右侧和B的左侧,由电荷产生的电场方向总相反,因而都有可能抵消,选D。
【错解原因】
错解一忽略了A,B间EA和EB方向都向左,不可能抵消。
错解二认为在A的右侧和B的左侧,由两电荷产生的电场方向总相反,因而都有可能抵消,却没注意到A的右侧EA总大于EB,根本无法抵消。
【分析解答】
因为A带正电,B带负电,所以只有A右侧和B左侧电场强度方向相反,因为QA>QB,所以只有B左侧,才有可能EA与EB等量反向,因而才可能有EA和EB矢量和为零的情况。
【评析】
解这类题需要的基本知识有三点:(1)点电荷场强计算公式

点电荷而来;(3)某点合场强为各场源在该点场强的矢量和。

例4 如图8-3所示,QA=3×10-8C,QB=-3×10-8C,A,B两球相距5cm,在水平方向外电场作用下,A,B保持静止,悬线竖直,求A,B连线中点场强。(两带电小球可看作质点)

【错解】
以A为研究对象,B对A的库仑力和外电场对A的电场力相等,所

AB中点总场强E总=E+EA+EB=E外=1.8×105(N/C),方向向左。
【错解原因】
在中学阶段一般不将QB的电性符号代入公式中计算。在求合场强时,应该对每一个场做方向分析,然后用矢量叠加来判定合场强方向,

【分析解答】
以A为研究对象,B对A的库仑力和外电场对A的电场力平衡,

E外方向与A受到的B的库仑力方向相反,方向向左。在AB的连线中点处EA,EB的方向均向右,设向右为正方向。则有E总=EA+EB-E外。
例5 在电场中有一条电场线,其上两点a和b,如图8-4所示,比较a,b两点电势高低和电场强度的大小。如规定无穷远处电势为零,则a,b处电势是大于零还是小于零,为什么?

【错解】
顺电场线方向电势降低,∴Ua>Ub,因为无穷远处电势为零,顺电场线方向电势降低,∴Ua>Ub>0。
【错解原因】
由于把所给电场看成由正点电荷形成的电场,认为从正电荷出发,顺电场线电势逐渐减小到零,从而得出Ua,Ub均大于零。
【分析解答】
顺电场线方向电势降低,∴Ua>Ub,由于只有一条电力线,无法看出电场线疏密,也就无法判定场强大小。同样无法判定当无穷远处电势为零时,a,b的电势是大于零还是小于零。若是由正电荷形成的场,则Ea>Eb,Ua>Ub>0,若是由负电荷形成的场,则Ea<Eb,0>Ua>Ub。
例6 如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:
A.闭合K1,有电子从枕型导体流向地
B.闭合K2,有电子从枕型导体流向地
C.闭合K1,有电子从地流向枕型导体
D.闭合K2,没有电子通过K2

【错解】枕型导体电荷总是守恒的,没有电子流过K2。选D。
【错解原因】
由于对没有正确理解电荷守恒的相对性,所以在本题中认为枕型导体的电荷总是守恒的,便错选答案D。
【分析解答】
在K1,K2都闭合前,对于枕型导体它的电荷是守恒的,a,b出现的负、正电荷等量。当闭合K1,K2中的任何一个以后,便把导体与大地连通,使大地也参与了电荷转移。因此,导体本身的电荷不再守恒,而是导体与大地构成的系统中电荷守恒。由于静电感应,a端仍为负电荷,大地远处感应出等量正电荷,因此无论闭K1还是K2,都是有电子从地流向导体,应选答案C。
例7 如图8-6所示,两个质量均为m的完全相同的金属球壳a与b,其壳层的厚度和质量分布均匀,将它们固定于绝缘支座上,两球心间的距离为l,为球半径的3倍。若使它们带上等量异种电荷,使其电量的绝对值均为Q,那么,a、b两球之间的万有引力F引库仑力F库分别为:
【错解】
(1)因为a,b两带电球壳质量分布均匀,可将它们看作质量集中在球心的质点,也可看作点电荷,因此,万有引力定律和库仑定律对它们都适用,故其正确答案应选A。
(2)依题意,a,b两球中心间的距离只有球半径的3倍,它们不能看作质点,也不能看作点电荷,因此,既不能用万有引力定律计算它们之间的万有引力,也不能用库仑定律计算它们之间的静电力,故其正确答案应选B。
【错解原因】
由于一些同学对万有引力定律和库仑定律的适用条件理解不深刻,产生了上述两种典型错解,因库仑定律只适用于可看作点电荷的带电体,而本题中由于a,b两球所带异种电荷的相互吸引,使它们各自的电荷分布不均匀,即相互靠近的一侧电荷分布比较密集,又因两球心间的距离l只有其半径r的3倍,不满足l>>r的要求,故不能将两带电球壳看成点电荷,所以不能应用库仑定律。
万有引力定律适用于两个可看成质点的物体,虽然两球心间的距离l只有其半径r的3倍,但由于其壳层的厚度和质量分布均匀,两球壳可看作质量集中于球心的质点。因此,可以应用万有引力定律。
综上所述,对于a,b两带电球壳的整体来说,满足万有引力的适用条件,不满足库仑定律的适用条件,故只有选项D正确。
例8 如图8-7中接地的金属球A的半径为R,A点电荷的电量Q,到球心距离为r,该点电荷的电场在球心O处的场强等于: [ ]
【错解】
根据静电平衡时的导体内部场强处处为零的特点,Q在O处场强为零,选C。
【错解原因】
有些学生将“处于静电平衡状态的导体,内部场强处处为零”误认为是指Q电荷电场在球体内部处处为零。实际上,静电平衡时O处场强

相等,方向相反,合场强为零。
【分析解答】
静电感应的过程,是导体A(含大地)中自由电荷在电荷Q所形成的外电场下重新分布的过程,当处于静电平衡状态时,在导体内部电荷Q所形成的外电场E与感应电荷产生的“附加电场E'”同时存在的,且在导体内部任何一点,外电场电场场强E与附加电场的场强E'大小相等,方向相反,这两个电场叠加的结果使内部的合场强处处为零。即E内=0。

例9 如图8-8所示,当带正电的绝缘空腔导体A的内部通过导线与验电器的小球B连接时,问验电器是否带电?

【错解】
因为静电平衡时,净电荷只分布在空腔导体的外表面,内部无静电荷,所以,导体A内部通过导线与验电器小球连接时,验电器不带电。
【错解原因】
关键是对“导体的外表面”含义不清,结构变化将要引起“外表面”的变化,这一点要分析清楚。错解没有分析出空腔导体A的内部通过导线与验电器的小球B连接后,验电器的金箔成了导体的外表面的一部分,改变了原来导体结构。A和B形成一个整体,净电荷要重新分布。
【分析解答】
当导体A的内部通过导线与验电器的小球B连接时,导体A和验电器已合为一个整体,整个导体为等势体,同性电荷相斥,电荷重新分布,必有净电荷从A移向B,所以验电器带正电。
例10 三个绝缘的不带电的相同的金属球A,B,C靠在一起,如图8-9所示,再将一个带正电的物体从左边靠近A球,并固定好,再依次拿走C球、B球、A球,问:这三个金属球各带什么电?并比较它们带电量的多少。

【错解】
将带正电的物体靠近A球,A球带负电,C球带正电,B球不带电。将C,B,A三球依次拿走,C球带正电,B球不带电,A球带负电,QA=QC。
【错解原因】
认为将C球拿走后,A,B球上所带电量不改变。其实,当C球拿走后,A,B球原来的静电平衡已被破坏,电荷将要重新运动,达到新的静电平衡。
【分析解答】
将带正电的物体靠近A,静电平衡后,A,B,C三球达到静电平衡,C球带正电,A球带负电,B球不带电。当将带正电的C球移走后,A,B两球上的静电平衡被打破,B球右端电子在左端正电的物体的电场的作用下向A运动,形成新的附加电场,直到与外电场重新平衡时为止。此时B球带正电,A球所带负电将比C球移走前多。依次将C,B,A移走,C球带正电,B球带少量正电,A球带负电,且A球带电量比C球带电量多。
|QA|=|QB|+|QC|
例11 如图8-10所示,当带电体A靠近一个绝缘导体B时,由于静电感应,B两端感应出等量异种电荷。将B的左端接地,绝缘导体B带何种电荷?
【错解】
对于绝缘体B,由于静电感应左端带负电,右端带正电。左端接地,左端电荷被导走,导体B带正电。
【错解原因】
将导体B孤立考虑,左端带负电,右端带正电,左端接地后左边电势比地电势低,所以负电荷将从电势低处移到电势高处。即绝缘体B上负电荷被导走。
【分析解答】
因为导体B处于正电荷所形成的电场中,而正电荷所形成的电场电势处处为正,所以导体B的电势是正的,UB>U地;而负电荷在电场力的作用下总是从低电势向高电势运动,B左端接地,使地球中的负电荷(电子)沿电场线反方向进入高电势B导体的右端与正电荷中和,所以B导体将带负电荷。

例12 如图8-11所示,质量为m,带电量为q的粒子,以初速度v0,从A点竖直向上射入真空中的沿水平方向的匀强电场中,粒子通过电场中B点时,速率vB=2v0,方向与电场的方向一致,则A,B两点的电势差为:


【错解】
带电粒子在电场中运动,一般不考虑带电粒子的重力,根据动能定理,电场力所做的功等于带电粒子动能的增量,电势差等于动能增量与电量Q的比值,应选D。
【错解原因】
带电粒子在电场中运动,一般不考虑带电粒子的重力,则粒子在竖直方向将保持有速度v0,粒子通过B点时不可能有与电场方向一致的2v0,根据粒子有沿场强方向的速度2v0,则必是重力作用使竖直向上的速度变为零。如一定不考虑粒子重力,这只有在电场无限大,带电粒子受电场力的作用,在电场方向上的速度相比可忽略不计的极限状态,且速度沿电场方向才能成立。而本题中v0与vB相比不能忽略不计,因此本题应考虑带电粒子的重力。
【分析解答】
在竖直方向做匀减速直线运动2gh=v02①

根据动能定理


例13 在边长为30cm的正三角形的两个顶点A,B上各放一个带电小球,其中Q1=4×10-6 Q2=-4×10-6C,求它们在三角形另一顶点C处所产生的电场强度。
【错解】
C点的电场强度为Q1,Q2各自产生的场强之和,由点电荷的场强公式,

∴E=E1+E2=0【错解原因】
认为C点处的场强是Q1,Q2两点电荷分别在C点的场强的代数和。
【分析解答】
计算电场强度时,应先计算它的数值,电量的正负号不要代入公式中,然后根据电场源的电性判断场强的方向,用平行四边形法求得合矢量,就可以得出答案。

由场强公式得:

C点的场强为E1,E2的矢量和,由图8-12可知,E,E1,E2组成一个等边三角形,大小相同,∴E2=4×105(N/C)方向与AB边平行。
例14 置于真空中的两块带电的金属板,相距1cm,面积均为10cm2,带电量分别为Q1=2×10-8C,Q2=-2×10-8C,若在两板之间的中点放一个电量q=5×10-9C的点电荷,求金属板对点电荷的作用力是多大?
【错解】
点电荷受到两板带电荷的作用力,此二力大小相等,方向相同,由


【错解原因】
库仑定律只适用于点电荷间相互作用,本题中两个带电金属板面积较大,相距较近,不能再看作是点电荷,应用库仑定律求解就错了。
【正确解答】
两个平行带电板相距很近,其间形成匀强电场,电场中的点电荷受到电场力的作用。

例15 如图8-14,光滑平面上固定金属小球A,用长l0的绝缘弹簧将A与另一个金属小球B连接,让它们带上等量同种电荷,弹簧伸长量为x1,若两球电量各漏掉一半,弹簧伸长量变为x2,则有:( )


【错解】

故选B
【分析解答】
由题意画示意图,B球先后平衡,于是有

例17 如图8-15所示,长为l的绝缘细线,一端悬于O点,另一端连接一质量为m的带负电小球,置于水平向右的匀强电场中,在O点

向右水平拉直后从静止释放,细线碰到钉子后要使小球刚好饶钉子O′在竖直平面内作圆周运动,求OO′长度。

【错解】
摆球从A落下经B到C的过程中受到重力G,绳子的拉力T和电场力F电三个力的作用,并且重力和电场力做功,拉力不做功,由动能定理

摆球到达最低点时,摆线碰到钉子O′后,若要小球刚好绕钉子O′在竖直平面内做圆周运动,如图8-16。则在最高点D应满足:


从C到D的过程中,只有重力做功(负功),由机械能守恒定律

【正确解答】
本题是一个摆在重力场和电场的叠加场中的运动问题,由于重力场和电场力做功都与路径无关,因此可以把两个场叠加起来看成一个等效力场来处理,如图8-17所示,
∴θ=60°。
开始时,摆球在合力F的作用下沿力的方向作匀加速直线运动,从A点运动到B点,由图8-17可知,△AOB为等边三角形,则摆球从A到B,在等效力场中,由能量守恒定律得:
在B点处,由于在极短的时间内细线被拉紧,摆球受到细线拉力的冲量作用,法向分量v2变为零,切向分量
接着摆球以v1为初速度沿圆弧BC做变速圆周运动,碰到钉子O′后,在竖直平面内做圆周运动,在等效力场中,过点O′做合力F的平行线与圆的交点为Q,即为摆球绕O′点做圆周运动的“最高点”,在Q点应满足
过O点做OP⊥AB取OP为等势面,在等效力场中,根据能量守恒定律得:
例18 在平行板电容器之间有匀强电场,一带电粒子以速度v垂直电场线射入电场,在穿越电场的过程中,粒子的动能由Ek增加到2Ek,若这个带电粒子以速度2v垂直进入该电场,则粒子穿出电场时的动能为多少?
【错解】
设粒子的的质量m,带电量为q,初速度v;匀强电场为E,在y方向的位移为y,如图8—18所示。
建立直角坐标系,初速度方向为x轴方向,垂直于速度方向为y轴方向。设粒子的的质量m,带电量为q,初速度v;匀强电场为E,在y方向的位移为y。速度为2v时通过匀强电场的偏移量为y′,平行板板长为l。
由于带电粒子垂直于匀强电场射入,粒子做类似平抛运动。
两次入射带电粒子的偏移量之比为
【例19 A,B两块平行带电金属板,A板带负电,B板带正电,并与大地相连接,P为两板间一点。若将一块玻璃板插入A,B两板间,则P点电势将怎样变化。
【错解】
UpB=Up-UB=Ed
电常数ε增大,电场强度减小,导致Up下降。
【分析解答】
按照题意作出示意图,画出电场线,图8-19所示。
我们知道电场线与等势面间的关系:“电势沿着电场线的方向降落”所以UpB=Up-UB<0,B板接地UB=0
UBp=UB-Up=0-Up
Up=-Ed
常数ε增大,电场强度减小,导致Up上升。
例20 如图8-20电路中,电键K1,K2,K3,K4均闭合,在平行板电容器C的极板间悬浮着一带电油滴P,
(1)若断开K1,则P将__________;
(2)若断开K2,则P将________;
(3)若断开K3,则P将_________;
(4)若断开K4,则P将_______。
【常见错解】
(1)若断开K1,由于R1被断开,R2上的电压将增高,使得电容器两端电压下降,则P将向下加速运动。
(2)若断开K2,由于R3被断开,R2上的电压将增高,使得电容器两端电压下降,则P将向下加速运动。
(3)若断开K3,由于电源被断开,R2上的电压将不变,使得电容器两端电压不变,则P将继续悬浮不动。
(4)若断开K4,由于电源被断开,R2上的电压将变为零,使得电容器两端电压下降,则P将加速下降。
【分析解答】
电容器充电完毕后,电容器所在支路的电流为零。电容器两端的电压与它所并联的两点的电压相等。本题中四个开关都闭合时,有R1,R2两端的电压为零,即R1,R2两端等势。电容器两端的电压与R3两端电压相等。
(1)若断开K1,虽然R1被断开,但是R2两端电压仍为零,电容器两端电压保持不变,则P将继续悬浮不动
(2)若断开K2,由于R3被断开,电路再次达到稳定时,电容器两端电压将升高至路端电压R2上的电压仍为零,使得电容器两端电压升高,则P将向上加速运动。
(3)若断开K3,由于电源被断开,电容器两端电压存在一个回路,电容器将放电至极板两端电压为零,P将加速下降。
(4)K4断开,电容器两端断开,电量不变,电压不变,场强不变,P将继续悬浮不动。
例21 一个质量为m,带有电荷-q的小物块,可在水平轨道Ox上运动,O端有一与轨道垂直的固定墙,轨道处于匀强电场中,场强大小为E,方向沿Ox轴正方向,如图8-21所示,小物体以初速v0从x0沿Ox轨道运动,运动时受到大小不变的摩擦力f作用,且f<qE。设小物体与墙碰撞时不损失机械能且电量保持不变。求它在停止运动前所通过的总路程s。
【错解】
错解一:物块向右做匀减速运动到停止,有
错解二:小物块向左运动与墙壁碰撞后返回直到停止,有W合=△Ek,得
【分析解答】
设小物块从开始运动到停止在O处的往复运动过程中位移为x0,往返路程为s。根据动能定理有
例22 1000eV的电子流在两极板中央斜向上方进入匀强电场,电场方向竖直向上,它的初速度与水平方向夹角为30°,如图8-22。为了使电子不打到上面的金属板上,应该在两金属板上加多大电压U?

【错解】
电子流在匀强电场中做类似斜抛运动,设进入电场时初速度为v0,
因为电子流在电场中受到竖直向下电场力作用,动能减少。欲使电子刚好打不到金属板上有Vr=0,此时电子流动能
【分析解答】
电子流在匀强电场中做类似斜抛运动,欲使电子刚好不打金属板上,则必须使电子在d/2内竖直方向分速度减小到零,设此时加在两板间的电压为U,在电子流由C到A途中,
电场力做功We=EUAC,由动能定理
至少应加500V电压,电子才打不到上面金属板上。
例23 如图8-23,一个电子以速度v0=6.0×106m/s和仰角α=45°从带电平行板电容器的下板边缘向上板飞行。两板间场强E=2.0×104V/m,方向自下向上。若板间距离d=2.0×10-2m,板长L=10cm,问此电子能否从下板射至上板?它将击中极板的什么地方?
【错解】
规定平行极板方向为x轴方向;垂直极板方向为y轴方向,将电子的运动分解到坐标轴方向上。由于重力远小于电场力可忽略不计,则y方向上电子在电场力作用下做匀减速运动,速度最后减小到零。
∵vt2-v02=2as
y=d=s vt=0
即电子刚好击中上板,击中点离出发点的水平位移为3.99×10-2(m)。
【分析解答】
应先计算y方向的实际最大位移,再与d进行比较判断。
由于ym<d,所以电子不能射至上板。

收起

见物理选修1-3