在三角形ABC a^2+b^2=2005c^2则cotC/(cotA+cotB)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 19:44:53
在三角形ABC a^2+b^2=2005c^2则cotC/(cotA+cotB)=
xJ0_eUSޔ= I61 Yg7:po[t+LPބs'$F`qBӋ5#qȃ* 5xuH8mUN4Ł2߸Fz QM ]=<]64~$Mdت]ݲ#]4*n2c_Otv=!DXjv>ߊOtQ岤2n|R>ҬG`wH \iRiƺ> o_&\

在三角形ABC a^2+b^2=2005c^2则cotC/(cotA+cotB)=
在三角形ABC a^2+b^2=2005c^2则cotC/(cotA+cotB)=

在三角形ABC a^2+b^2=2005c^2则cotC/(cotA+cotB)=
题:在三角形ABC a^2+b^2=2005c^2则cotC/(cotA+cotB)=
cotC/(cotA+cotB)=
=cosC:sinC(cosA/sinA+cosB/sinB)=
=cosCsinAsinB:sicCsin(A+B)
=cosCsinAsinB:sinCsinC(以下用正弦定理)
=cosC*ab/cc
cc=aa+bb-2abcosC(代入已知条件)
=2005cc-2abcosC
故2abcosC=2004cc
于是
cotC/(cotA+cotB)=
=cosC*ab/cc
=1002
以上:表示/(),即:后面整体作为分母.