奇函数f(x)的定义域为R,[0,+∞)上为增函数,当0≤θ≤π/2时,是否存在实数m使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0,π/2]均成立?求适合的所有实数m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:47:44
奇函数f(x)的定义域为R,[0,+∞)上为增函数,当0≤θ≤π/2时,是否存在实数m使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0,π/2]均成立?求适合的所有实数m
xTn@$d+c6Dl-h]m쾜BKCҪ"Bn?(U~;;cl"}{Ν3)M\v,iAkЮ/\'J&iNwa :r[>:AX *GpZ XFǃ5 K_y@~QE1bpv\5\Du΁c9cvte/AA0Rx:Sl,__VٲG`ZAD͠"pS=1]IzIeh q} XKReC$E ܋jTjy4}lW!n5%%Jq<?"N!su<ݿ=?tr&GM5훦rRt9ɳ Nmr " [%nAzw&(YR ZfoUZr?{7P旅,$w ;m -V/ao '!'tx܉ݒA:Ix}{&d`nt7ѻƂ`ukB>ƄXÆ:S ٜw8wNJf[4}-Iouh pL*u550h?Ƶa^,# =2rj]!;_|1xt>

奇函数f(x)的定义域为R,[0,+∞)上为增函数,当0≤θ≤π/2时,是否存在实数m使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0,π/2]均成立?求适合的所有实数m
奇函数f(x)的定义域为R,[0,+∞)上为增函数,当0≤θ≤π/2时,是否存在实数m
使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0,π/2]均成立?求适合的所有实数m

奇函数f(x)的定义域为R,[0,+∞)上为增函数,当0≤θ≤π/2时,是否存在实数m使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0,π/2]均成立?求适合的所有实数m
由题意,f(x)在x=0处有定义且在[0,+∞)上是增函数,
故f(x)在(-∞,+∞)上连续且为增函数
由f(0)=-f(-0),得f(0)=0
f(cos2θ-3)+f(4m-2mcosθ)>f(0)=0
移向变形得
f(cos2θ-3)>-f(4m-2mcosθ)=f(2mcosθ-4m)
∴由f(x)(-∞,+∞)上连续且为增函数,得
cos2θ-3>2mcosθ-4m
2cos²θ-4-2mcosθ+4m>0
cos²θ-mcosθ+(2m-2)>0
根据题意,θ∈[0,π/2]时,cosθ∈[0,1]
令t=cosθ∈[0,1]
则,题目变成t∈[0,1]时,t²-mt+(2m-2)>0恒成立,求m的取值范围
令f(t)=t²-mt+(2m-2),此函数对应的抛物线开口向上,对称轴t=m/2,
分类讨论:
①当此抛物线对称轴t=m/2在区间[0,1]内时,m∈[0,2],
函数最小值(2m-2)-m²/4>0即可,此时m²-8m+81,与m2,
只要f(1)>0即可,此时1-m+2m-2=m-1>0,推出m>1,
∴m>2
综上所述,m的取值范围是(4-2√2,+∞)