数列{an}满足a(n+1)=3an-2/2an-1,且a1=2.(1)设bn=1/an-1,求证{bn}为等差数列.(2)求an通项式.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 08:11:31
数列{an}满足a(n+1)=3an-2/2an-1,且a1=2.(1)设bn=1/an-1,求证{bn}为等差数列.(2)求an通项式.
xQN0ԺGPƪ @鄄@ݺC AAMNgDaq{wI

数列{an}满足a(n+1)=3an-2/2an-1,且a1=2.(1)设bn=1/an-1,求证{bn}为等差数列.(2)求an通项式.
数列{an}满足a(n+1)=3an-2/2an-1,且a1=2.(1)设bn=1/an-1,求证{bn}为等差数列.(2)求an通项式.

数列{an}满足a(n+1)=3an-2/2an-1,且a1=2.(1)设bn=1/an-1,求证{bn}为等差数列.(2)求an通项式.
a(n+1)=(3an-2)/(2an-1)=(3an-3/2-1/2)/(2an-1)=3-1/[2(2an-1)]= →
a(n+1)=(3an-2)/(2an-1) → a(n+1)-1=(3an-2)/(2an-1)-1=(an-1)/(2an-1)
→ 1/[a(n+1)-1]=(2an-1)/(an-1)=1/(an-1)+2
∴1/(an-1)是公差为2的等差数列
1/(a1-1)=1/(2-1)=1,∴1/(an-1)=1+2(n-1)=2n-1
→ (an-1)=1/(2n-1)
→an=1+1/(2n-1)=2n/(2n-1)