e1,e2是平面内一组基底.这句话说明了什么?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 11:33:11
x)K5I5z6cӝ_]Ɏ[tTg>_bߵF 1d0 Edu
e1,e2是平面内一组基底.这句话说明了什么?
e1,e2是平面内一组基底.这句话说明了什么?
e1,e2是平面内一组基底.这句话说明了什么?
它们不共线
e1,e2是平面内一组基底.这句话说明了什么?
设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ).A.e1+e2和e1-e2 B.3e1-2e2和4e2-6e1 C.e1+2e2和e2+2e1 D.e2和e1+e2
已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1和e1+e2 B.e1-2e2和e2-2e1C.e1-2e2和4e2-2e1D.e1-e2和e1+e2为什么选C?
若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是A、e1-e2,e2-e1B、2e1-e2,e1-1/2e2C、2e2-3e1,6e1-4e2D、e1+e2,e1-e2
已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1-e2和e1+e2B.3e1-2e2和4e1-6e2C.e1-2e2和e1-2e2D.e2和e1+e2希望有正确的答案详细的原因解释与过程
若e1,e2是表示平面内所有向量的一组基底则下面各组向量中不能作为基底的是(1)e1-e2和1/2e1+1/2e2 (2)1/2e1-1/3e2和3e1-2e2 (3)e1+1/3e2和3e1+e2
已知e1,e2为平面内一组基底,向量AB=3(e1+e2),向量CB=e2-e1,向量CD=2e1+e2则四点A B C D中共线的是?
设e1,e2是平面内一组基底,证明:当λ1e1+λ2e2=0时,恒有λ1=λ2=0
设e1,e2是平面的一组基底,且a=e1+2e2,b=-e1+e2.则e1+e2=
平面向量的正交分解已知e1,e2是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2求x-y的值?
已知e1,e2(是向量)是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2,求x-y,xy的值
已知e1与e2不共线,a=e1+2e2,b=2e1+λe2,要使a,b能作为平面内所有向量的一组基底,则实数,则实数λ的取值范围是?
已知e1,e2不共线,a=e1+2e2,b=2e1+se2,要使a,b能作为平面内所有向量的一组基底,则实数S的取值范围是()
基底和正交基底.我查了下好像还没有人体这个问题吧?呵呵 我们把不共线向量 e1,e2,叫做表示这一组平面内所有向量的一组基底.那正交基底是什么?不共线向量e1⊥e2吗?正交基底还要满足什么
平面向量基本定理 的证明如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2.这里{e1、e2}称为这一平面内所有向量的一组基底,
已知向量e1,e2是平面内的一组基底(1)若AB=e1+e2,BC=2e1+8e2,CA=te1-t^2e2,且A,B,C三点不共线,求实数k的值(2)试确定实数k的值,使ke1-e2与e1-ke2共线且方向相反
设向量e1,向量e2是平面内的一组基底,证明:当λ1倍向量e1+λ2倍向量e2=0时恒有λ1=λ2=0
向量设e1,向量e2是平面内的一组基底,证明:当λ1倍向量e1+λ2倍向量e2=0时恒有λ1=λ2=0