【高中数学】在三角型ABC中,已知(a2+b2)sin(A-B)=(a2-b2)sin(A-B)证三角形ABC是等腰三角形或直角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:45:36
xSJP!ܴHsz5#oȊb+۪AMy]d5tf#@
nY2)hjFXsз[ 9ʟwP*?|h6jI4VW-ɌΞEd`昔DD#9K8o.Z//l0ddJi,0
:Fp&Q>=yڙ,eyoQ"aYbr4 @DsVP, k$fDM 93nt@tQ֣
【高中数学】在三角型ABC中,已知(a2+b2)sin(A-B)=(a2-b2)sin(A-B)证三角形ABC是等腰三角形或直角三角形
【高中数学】在三角型ABC中,已知(a2+b2)sin(A-B)=(a2-b2)sin(A-B)证三角形ABC是等腰三角形或直角三角形
【高中数学】在三角型ABC中,已知(a2+b2)sin(A-B)=(a2-b2)sin(A-B)证三角形ABC是等腰三角形或直角三角形
证明:
(a²+b²)(sinAcosB-cosAsinB)=(a²-b²)(sinAcosB+cosAsinB)
a²sinAcosB-a²cosAsinB+b²sinAcosB-b²cosAsinB=a²sinAcosB+a²cosAsinB-b²sinAcosB-b²cosAsinB
a²cosAsinB=b²sinAcosB
∴a²cosA/sinA=b²cosB/sinB
∴ a²sinAcosA/sin²A=b²sinBcosB/sin²B
由正弦定理可以知道a/sinA=b/sinB ∴a²/sin²A=b²/sin²B
∴ sinAcosA=sinBcosB ∴ 2sinAcosA=2sinBcosB
∴ sin2A=sin2B
∴ 2A=2B 或者 2A=180°-2B
∴ A=B或者A+B=90°
∴ △ABC是等腰三角形或者直角三角形