已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余弦值1/2,求角B的大小,若三角形ABC外接圆半径为1,求a+c的范围 帮帮

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:22:51
已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余弦值1/2,求角B的大小,若三角形ABC外接圆半径为1,求a+c的范围 帮帮
xSn@*[v!f#yV<8~!nշħTOdV.]Ϗ}ɍՅr WՖ[ 0 (LWt~7,/dʐeuvtðΙ:W[~x56IWnEU$W3\7oۺ\['y ? TH>[M)syE

已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余弦值1/2,求角B的大小,若三角形ABC外接圆半径为1,求a+c的范围 帮帮
已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余弦值1/2,求角B的大小,若三角形ABC外接圆半径为1,求a+c的范围 帮帮

已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余弦值1/2,求角B的大小,若三角形ABC外接圆半径为1,求a+c的范围 帮帮
向量m=(sinB,1-cosB),向量n=(2,0),
m•n=2sinB,
|m|=√(sin²B+(1-cosB) ²)=√(2-2 cosB)= √[2(1- cosB)]= √[2•2sin²(B/2)]=2 sin(B/2).
|n|=2
所以Cosα=m•n/(|m||n|)=2sinB/[4 sin(B/2)]= 4 sin(B/2)cos(B/2) /[4 sin(B/2)]= cos(B/2).
由已知:Cosα=1/2,
∴cos(B/2) =1/2,B/2 =π/3.B=2π/3.
由正弦定理得a/sinA=b/sinB=c/sinC=2R=2.
所以(a +c )/(sinA +sinC)=2
a +c=2(sinA +sinC)
∵B=2π/3.A +C=π/3.
∴a +c=2(sinA +sin(π/3-A))=2(sinA +√3/2cosA-1/2sinA)
=2(1/2sinA +√3/2cosA)=2sin (A+π/3)
因为0

已知三角形ABC的三个内角A,B,C(A 在三角形ABC中,A、B、C是三角形的三个内角,a、b、c是三内角对应的三边,已知b方+c方-a方=bc.(1)求角...在三角形ABC中,A、B、C是三角形的三个内角,a、b、c是三内角对应的三边,已知b方+c方-a方=bc.(1) 三角形三个内角ABC,三个内角对应边abc,已知cos(A-C)+cosB=3/2 b平方等于ac求B 已知在三角形abc中,A、B、C为三个内角,a、b、c分别为对应的三条边,π/3 已知在三角形abc中,A、B、C为三个内角,a、b、c分别为对应的三条边,π/3 已知abc为三角形ABC的三个内角的对应边,试证明(aA+bB+cC)/(a+b+c)<π/2 已知三角形ABC中,A,B,C为三角形的三个内角,且A 已知ABC为三角形ABC的三个内角 求证 cos(2A+B+C)=-cosA 已知三角形ABC的三个内角A,B,C,的对应边是a,b,c,若a,b,c成等差数列,且2cos2B+5=8cosB,求三角形ABC的形状 已知三角形ABC的三个内角A,B,C,的对应边是a,b,c,若a,b,c成等比数列,且2cos2B+5=8cosB,求三角形ABC的形状 已知三角形ABC的三个内角A,B,C成等差数列,且A 已知三角形ABC的三个内角A,B,C成等差数列,且A 已知三角形ABC的内角A,B,C所对应的边为abc,且a2 b2 c2 已知a,b,c分别是三角形ABC三个内角A,B,C对应的边,若a=1,b=根号3,A+C=2B,则C的正弦是? 在三角形ABC中,三个内角A、B、C对应边分别是a、b、c,已知c=3,C=60度,a+b=5,则cos((A-B)/2)的值为?RT 三角形三个内角ABC所对应边为abc,已知cos(A-C)+cosB=3/2,b平方=ac求B 在三角形中abc为三个内角ABC对应的三边已知b²+c²=a²+bc求角A.若sinBsinc=¾.判断三角形形状并说明理由 在三角形ABC中,三个内角A.B.C对应的边分别为a.b.c,且A.B.C成等差数列,a.b.c成等比数列,证明:三角...在三角形ABC中,三个内角A.B.C对应的边分别为a.b.c,且A.B.C成等差数列,a.b.c成等比数列,证明:三角