三角函数是什么怎么理解这些东西呢?公式里写的abc是指什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 18:48:06
三角函数是什么怎么理解这些东西呢?公式里写的abc是指什么?
x\[s[Ǒ+x*d:7[e%E)ɛ]o>֪lmKR7w^@H)wT9Ia388R*ƙkOO_W:%жVz +_;vJ{Nwj9gwBG/$Txޜ.Y/zt}\!#__s_u|ЫZ)͠WO*tkeZ^Pts*gTj gJWHUꪱk6tVt:uaUU*-*KU>ua{C{)sLsW{i+]!X&5,ęYJ}8k^\^>R*k'U.lhJCgRntk|ʈV~_7{!rܐF˜C-l+Dl CkLD)C+W@S;UuNvB }9w$lmesCxKֶvDYuTN:8& ]U\3{#7 YdEEE3[WMgtbRlydäDȊY{u %Z?ߵ oŭQ>RȂx2*hN,@wunop+o\ߥE]6q,GҬ4 抾2TD]5*|놤$U&+3b1)2n:Y 9:kjq.U25DӶ.4׉pC}Nʽ FK1i.dI J \dt̎>'ϵIo]4\z= kX;v4rU(Yi2-^MNXY ׌lyKEڅ3R3" 2-%C;/?vo?d6Sdy*wnJW X:>8vcM,|m&?u1?}&V|T - o?b]6JT?wHY~H 2Pp%?, Qa8h 0@AlH@-mbޑ</@hLzɳ5by9驌5`ճrG0ZBR:@(V ziCɺַUu'Lg- "V4HJmrݍ SsˣdibL@#Cp,fl+DhW׉C]ym,`,5ݪTj{.kJ *QsiUG ֚*n)wêP>u*P|,<='(*,POR Uh@ iִYpօ]0iY]V(;k{Ԡ;Ic dtA\sL x,0̃Űʉ$Qbu^92Ռ MN2b9ڡj5,%썶~XP)!gU?Ul՞CTbuz[Ng {[RYNBh3 M?d&E0A *EUh[V$#{rIl4lOܺi,M&N|U 9q &֦YC OAnX9{T͍\ݟmJ{z,Xw;?r٭[:D\6@װàQgm '诟#.Nfe|t!!0L@\)8Nc*yjbtҁ(ar*d.;36"di:bWeRD*As" d 1)T]$Vd]$!,M0,Zg(wK " k *x=2`3 5!D:ML͸h/{\$U+r9!x% e&2QF~S1 M-dDſ_3 wP<hP ;)3֘Uxc2c }Ly($FsLj- 7 w>q"{phuK!SA &86rgiJCC9!+ُQ0*e hҫ߁|OS#hɍh'7]g|M8A.`n!-,Z~2puV}UEcawd'l To>fڡغX"uk^JRI:spy Os~ a3RSVpZDK @u_sBq!4^럩VnZI9Le 9Ζ/d~RG/RHuN̏wegA ep28A5ɨ&?}vCkJ :(?rD!XKYv?b/E0,r8Cg!ͼ 2F)-`ܫLbiH@(|o;@jԌt ʑ642c1O5 @#٘٧.̓32x(BI؈{z}ebi$DuJg2 ^s&5 Č!uR v.nm723$ڻA\KND?{ ˭I yL*ʯ+N+o7Kv2 kqC}2qLի5@kQbI:%naIba4/l$#ODIrV6kð\+yz?6s:m I%Ts(cE8r8ez i9S,;0h7#\-6s^ґoQ%žd4ufYO0q?]lIjqvysgVhWO؟/ D &#,-0&b NНz͔8uJLFv4 0?P tOfw:e(J.Z-e4`+Q<93SkHS01x(0.YׇyheHBtMkHM( Z4b{ʉ[@6$E7KvUP)7]5*o$R=r.AsR~6~}jrrVWA>5VǓV< G:$:62'HaȉqJ|D".=܂vnrzElX"Ib+}~.DhLѓ&eɧJ0%k ()זGZ@hUEz{>&czOM1[в5fCS2crb%) 7Sm izRL&(*6ML1R@mVU|IE ; p*fEӄU#e܍Pv]f Kb̦tsھݒC?9>#9"'Lm6DWFf] |RJHtE ҋdd? #ET=9gcQ f5NW [@+t){rŎa^ ?۸< Malp[*inpT**CS 0TG_C^D#SKhd];oACE熊ǻF'IWܹJ9u#֑FC[6w ^DGvcW?)$@|ih`=[g@Mc^W~\V X㐂M3;:ypb )S1B#2ėM>Yǻ=̵*d&aue,XP fH_9nSU@ dLΐryӘt`2ĝod(41嗏Ste=ZlbD): +NZLs3/]%$ G򢕪pB1${PDl*j$H,;Kj߱ͩGOy4~sw?d_^4*D|kU?o#gq n`̐0bZYp&δV N 5ѷ|v̛ӷѷ7ݷ13iy-^P)>s59x?U[H[ـ^κtpf^9:ɰ^R38tC%]%ޕ!-,+!@#b(eYG#bLm\s018 ybk"G| 'rrrtۂ@·6:ʫtKb%gGKfFtzZAU"h.;ԤB&%9"GEnɬ\g^Y,s!w4l)Yk!g'!^nF6buAkA!Iw\5Q $ 9a2rH /ŭfxչ+jd#/0),eNs`* BCLݓij7ڴ}*诟b w{xUl[G0MY+Lx]3\k77@Ĺg"(eWm7l5r8M^pUAٝ m0sjYPq \o"QDܫ!AثvZکQbDtYeb6هԳ}UmadÇUgNIzb* kĭu,OI:'20C=#7kcWM(;)_e%0#7/ 4ETYz2͍_a-d&I"60QG Z>Os$V~61#NhhqFZB|!fD|rcLa?V&9B/ELLjő_t 0yU_Bg2!) Q% QyEwYVVS/X#v3*!lt[:@Y=+TW ftfDJS:̻)41 +-=>q/ĞO0@(%r_~N@ELRx(+7 $ u>`-. $~r.';99XGy m>]7gι$&8NmQx ;pǜ]XMdmkKs^HdZm}g hXp74c׿j8})T>:q;+Kn<pfDd#JⴟQY*SƷX TU ``lͩ I-Vs:MRy~~1rC:%uQ$XsO(W޳K9(n@^>q帔\%KIʀ/BNpSʛ>C=Zb$fTP(>k!9ΟM}<]Gj >AqC".@=V@rD l=2`&[ζ7JLdoR.PVT={F !~Z]3L*ãMJ/w -&WJBBhF" '}UaĻg``d%3>,s;`~qI3uboVXcm (=vxMnE__I@Fs F̑U>g~`pKEzN0opG>e 3&=b }/gqG,$.F}?s+yd!'fQo!B^]kz`}>SW M=D?xL

三角函数是什么怎么理解这些东西呢?公式里写的abc是指什么?
三角函数是什么
怎么理解这些东西呢?公式里写的abc是指什么?

三角函数是什么怎么理解这些东西呢?公式里写的abc是指什么?
三角函数是数学中常见的一类关于角度的函数.也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义.三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具.在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值.
常见的三角函数包括正弦函数(SinX)、余弦函数(Cosx)和正切函数(tanx).在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数.不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式.
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途.另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数.常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等.
公式里写的abc是指什么?
是指三角形的三边

角A与边a相对,角B与边b相对,以此类推。
三角函数是数学中常见的一类关于角度的函数。也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数...

全部展开

角A与边a相对,角B与边b相对,以此类推。
三角函数是数学中常见的一类关于角度的函数。也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数(SinX)、余弦函数(Cosx)和正切函数(tanx)。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
三角函数在数学中属于一类重要的周期函数也是初等函数里的超越函数的一类函数。它们本质上是任意角的集合与一个比值的集合的变量之间的映射。由于三角函数具有周期性,所以并不具有单射函数(亦称为单调函数)意义上的反函数。三角函数在复数中有重要的应用,在物理学中也是常用的工具。例如在天文测量、大地测量、工程测量、机械制造、力学、光学、电学、地球物理学及图像处理等众多学科和领域中都有广泛的应用。
三角函数一般用于计算三角形(通常为直角三角形)中未知长度的边和未知的角度,在导航系统,工程学以及物理学方面都有广泛的用途。 其在基本物理中的一个常见用途是将矢量转换到笛卡尔坐标系中。现代比较常用的三角函数有6个,其中sin和cos还常用于模拟周期函数现象,比如说声波和光波,谐振子的位置和速度,光照强度和白昼长度,过去一年中的平均气温变化等等。
定义编辑
Rt△ABC
如右图,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对于AB与AC的夹角∠BAC而言:
对边(opposite)a=BC
斜边(hypotenuse)h=AB
邻边(adjacent)b=AC
基本函数

英文

缩写

表达式

语言描述
正弦函数

Sine

sin

a/h

∠A的对边比斜边
余弦函数

cosine

cos

b/h

∠A的邻边比斜边
正切函数

Tangent

tan

a/b

∠A的对边比邻边
余切函数

Cotangent

cot

b/a

∠A的邻边比对边
正割函数

Secant

sec

h/b

∠A的斜边比邻边
余割函数

Cosecant

csc

h/a

∠A的斜边比对边
(注:tan、cot曾被写作tg、ctg,现已不用这种写法。且因为cot、sec、csc易由sin、cos、tan推出,所以初、高中教材中已将其删去不讲)
锐角三角函数
定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫
做角A的锐角三角函数。
正弦(sin)等于对边比斜边;
余弦(cos)等于邻边比斜边;
正切(tan)等于对边比邻边;
余切(cot)等于邻边比对边;
正割(sec)等于斜边比邻边;
余割(csc)等于斜边比对边。
初中学习的 锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。到了高中三角函数值的求法是通过坐标定义法来完成的,这个时候角也扩充到了任意角。所谓锐角三角函数是指:我们初中研究的都是锐角 的 三角函数。初中研究的锐角 的 三角函数为:正弦(sin),余弦(cos),正切(tan)。
变化情况
正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;
正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);
正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
罕见
除了上述六个常见的函数,还有一些不常见的三角函数:
versin
函数名

与常见函数转化关系
正矢函数

versinθ=1-cosθ
vercosinθ=1+cosθ
余矢函数

coversinθ=1-sinθ
covercosinθ=1+sinθ
半正矢函数

haversinθ=(1-cosθ)/2
havercosinθ=(1+cosθ)/2
半余矢函数

hacoversinθ=(1-sinθ)/2
hacovercosinθ=(1+sinθ)/2
外正割函数

exsecθ=secθ-1
外余割函数

excscθ=cscθ-1
三角函数
任意角三角函数定义:如图:在平面直角坐标系中设O-x为任意角α的始边,在角α终边上任取一点P(x,y),令OP=r.
sinα=y/r cscα=r/y
cosα=x/r secα=r/x
tanα=y/x cotα=x/y
概念
六个三角函数也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,
三角函数
单位圆的方程是:对于圆上的任意点(x,y),x^2+y^2=1
图像中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的x和y坐标分别等于cosθ和sinθ。图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sinθ=y/1 和 cosθ=x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。
对于大于 2π 或小于等于2π 的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为 2π的周期函数:对于任何角度θ和任何整数k。
周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π弧度或 360°;正切或余切的基本周期是半圆,也就是 π 弧度或 180°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。
在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近正无穷,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。
三角函数
另一方面,所有基本三角函数都可依据中心为O的单位圆来定义,类似于历史上使用的几何定义。特别 是,对于这个圆的弦AB,这里的 θ 是对向角的一半,sinθ是AC(半弦),这是印度的阿耶波多介入的定义。cosθ是水平距离OC,versinθ=1-cosθ是CD。tanθ是通过A的切线的线段AE的长度,所以这个函数才叫正切。cotθ是另一个切线段AF。 secθ=OE和 cscθ=OF是割线(与圆相交于两点)的线段,所以可以看作OA沿着 A 的切线分别向水平和垂直轴的投影。DE是 exsecθ= secθ-1(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在 θ 接近 π/2的时候发散,而余割和余切在 θ 接近零的时候发散。
级数定义
只使用几何和极限的性质,可以证明正弦的导数是余弦,余弦的导数是负的正弦。(在微积分中,所有角度都以弧度来度量)。我们可以接着使用泰勒级数的理论来证明下列恒等式对于所有实数x都成立:
这些恒等式经常被用做正弦和余弦函数的定义。它们经常被用做三角函数的严格处理和应用的起点(比如,在傅里叶级数中),因为无穷级数的理论可从实数系的基础上发展而来,不需要任何几何方面的考虑。这样,这些函数的可微性和连续性便可以单独从级数定义来确立。
其他级数可见于:
注:Un是n次上/下数,
Bn是n次伯努利数,
线
依据单位圆定义,我们可以做三个有向线段(向量)来表示正弦、余弦、正切的值。
如图所示,圆O是一个单位圆,P是α的终边与单位圆上的交点,M点是P在x轴的投影,A(1,0)是圆O与x轴正半轴的交点,过A点做过圆心O的切线l。
那么向量MP对应的就是α的正弦值,向量OM对应的就是余弦值。OP的延长线(或反向延长线)与l的交点为T,则向量AT对应的就是正切值。向量的起止点不能颠倒,因为其方向是有意义的。
借助线三角函数线,我们可以观察到第二象限角α的正弦值为正,余弦值为负,正切值为负。
起源
“三角学”,英文Trigonometry,法文Trigonometrie,德文Trigonometrie,都来自拉丁文Trigonometria。现代三角学一词最初见于希腊文。最先使用Trigonometry这个词的是皮蒂斯楚斯( Bartholomeo Pitiscus,1516-1613),他在1595年出版一本著作《三角学:解三角学的简明处理》,创造了这个新词。它是由τριγωυου(三角学)及μετρει υ(测量)两字构成的,原意为三角形的测量,或者说解三角形。古希腊文里没有这个字,原因是当时三角学还没有形成一门独立的科学,而是依附于天文学。因此解三角形构成了古代三角学的实用基础。
早期的解三角形是因天文观测的需要而引起的。还在很早的时候,由于垦殖和畜牧的需要,人们就开始作长途迁移;后来,贸易的发展和求知的欲望,又推动他们去长途旅行。在当时,这种迁移和旅行是一种冒险的行动。人们穿越无边无际、荒无人烟的草地和原始森林,或者经水路沿着海岸线作长途航行,无论是那种方式,都首先要明确方向。那时,人们白天拿太阳作路标,夜里则以星星为指路灯。太阳和星星给长期跋山涉水的商队指出了正确的道路,也给那些沿着遥远的异域海岸航行的人指出了正确的道路。
就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角测量就应运而生了。因此可以说,三角学是紧密地同天文学相联系而迈出自己发展史的第一步的。
三角函数
三角学问题的提出:三角学理论的基础,是对三角形各元素之间相依关系的认识。一般认为,这一认识最早是由希腊天文学家获得的。当时,希腊天文学家为了正确地测量天体的位置。研究天体的运行轨道,力求把天文学发展成为一门以精确的观测和正确的计算为基础之具有定量分析的科学。他们给自己提出的第一个任务是解直角三角形,因为进行天文观测时,人与星球以及大地的位置关系,通常是以直角三角形边角之间的关系反映出来的。在很早以前,希腊天文学家从天文观测的经验中获得了这样一个认识:星球距地面的高度是可以通过人观测星球时所采用的角度来反映的(如图一);角度(∠ABC)越大,星球距地面(AC)就越高。然而,星球的高度与人观测的角度之间在数量上究竟怎么样呢?能不能把各种不同的角度所反映的星球的高度都一一算出来呢?这就是天文学向数学提出的第一个课题-制造弦表。所谓弦表,就是在保持AB不变的情况下可以供查阅的表 (如图二),AC的长度与∠ABC的大小之间的对应关系。
三角函数
独立三角学的产生:虽然后期的阿拉伯数学家已经开始对三角学进行专门的整理和研究,他们的工作也可以算作是使三角学从天文学中独立出来的表现,但是严格地说,他们并没有创立起一门独立的三角学。真正把三角学作为数学的一个独立学科加以系统叙述的,是德国数学家雷基奥蒙坦纳斯。
雷基奥蒙坦纳斯是十五世纪最有声望的德国数学家约翰●谬勒的笔名。他生于哥尼斯堡,年轻时就积极从事欧洲文艺复兴时期作品的收集和翻译工作,并热心出版古希腊和阿拉伯著作。因此对阿拉伯数学家们在三角方面的工作比较了解。
1464年,他以雷基奥蒙坦纳斯的名字发表了《论各种三角形》。在书中,他把以往散见在各种书上的三角学知识,系统地综合了起来,成了三角学在数学上的一个分支,
现代三角学的确认:直到十八世纪,所有的三角量:正弦、余弦、正切、余切、正割和余割,都始终被认为是已知圆内与同一条弧有关的某些线段,即三角学是以几何的面貌表现出来的,这也可以说是三角学的古典面貌。三角学的现代特征,是把三角量看作为函数,即看作为是一种与角相对应的函数值。这方面的工作是由欧拉作出的。1748年,欧拉发表著名的《无穷小分析引论》一书,指出:”三角函数是一种函数线与圆半径的比值”。具体地说,任意一个角的三角函数,都可以认为是以这个角的顶点为圆心,以某定长为半径作圆,由角的一边与圆周的交点P向另一边作垂线PM后,所得的线段OP、OM、MP(即函数线)相互之间所取的比值(如图八),sinα=MP/OP,cosα=OM/OP,tanα= MP/OM等。若令半径为单位长,那么所有的六个三角函数又可大为简化。
欧拉的这个定义是极其科学的,它使三角学从静态地只是研究三角形解法的狭隘天地中解脱了出来,使它有可能去反映运动和变化的过程,从而使三角学成为一门具有现代特征的分析性学科。正如欧拉所说,引进三角函数以后,原来意义下的正弦等三角量,都可以脱离几何图形去进行自由的运算。一切三角关系式也将很容易地从三角函数的定义出发直接得出。这样,就使得从希帕克起许多数学家为之奋斗而得出的三角关系式,有了坚实的理论依据,而且大大地丰富了。严格地说,这时才是三角学的真正确立。

收起

是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在...

全部展开

是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

收起

就是tan、sin、cos啊,适用于直角三角形tan=邻边/斜边 sin=对边/斜边 cos=邻边/斜边