设函数f(x)在对称区间【-a,a】上连续,证明:若f(x)为偶函数,则有∫f (x)dx=2∫f(x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 06:53:34
设函数f(x)在对称区间【-a,a】上连续,证明:若f(x)为偶函数,则有∫f (x)dx=2∫f(x)dx
x){nϦnHӨ|:g;/g[7LMI|0Ɏ=߽Vg3{)H˓6nc9:V)R*l@l0&H~og>dgӉ :6-|6O;ڀ?r愧$ف

设函数f(x)在对称区间【-a,a】上连续,证明:若f(x)为偶函数,则有∫f (x)dx=2∫f(x)dx
设函数f(x)在对称区间【-a,a】上连续,证明:若f(x)为偶函数,则有∫f (x)dx=2∫f(x)dx

设函数f(x)在对称区间【-a,a】上连续,证明:若f(x)为偶函数,则有∫f (x)dx=2∫f(x)dx
这什么呀,没写积分上下限吧.

设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx 设函数f(x),g(x)在区间[a,b]上连续,且f(a) 设函数f(x)在对称区间【-a,a】上连续,证明:若f(x)为偶函数,则有∫f (x)dx=2∫f(x)dx 设函数f(x)在闭区间[a,b]上连续,a 设函数f(x)在闭区间[a,b]上连续,a 设F(x)起连续函数,且为偶函数,在对称区间[-a,a]是的积分 f(x)d设F(x)起连续函数,且为偶函数,在对称区间[-a,a]是的积分∫(上a下-a)f(x)dx,由定积分的几何意义和性质得∫(上a下-a)f(x)dx= 设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c属于(a,b)使得f(c)>f(a)证明在(a,b)内至 设函数f(x)在区间【a,b】上有意义,在开区间可导,则()选项:A、f(a)*f(b) 设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(a+1) 一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b) 设函数f(x)=(x+a)/(x+b) (a>b>0),求函数的单调区间,证明其在单调区间上的单调性 设a>0,函数f(x)=(alnx)/x,求f(x)在区间[a,2a]上的最小值f(x)递减。 用区间套定理证明连虚函数有界性定理:若f(x)在[a,b]上连续,则f(x)在[a,b]上有界 设f(x),g(x)都是区间【a,b】上的单调递增函数,并且在该区间上,f(x) 设函数f(x)在闭区间【0,2a】上连续,且f(0)=f(2a),试证方程f(x)=f(x+a)在闭区间【0,a】上至少有一个实根 .设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.证明: 设函数f(x)在区间(a,b)内恒满足,|f(x)-f(y)| .貌似很简单= 1.证明 定义在对称区间(-a,a)上的任意函数可表示为一个奇函数与一个偶函数的和.2.证明 设f(x)为定义在(-a,a)内的奇函数.若f(x)在(0,a)内单调增加,则f(x)在(-a,o)内也单调增加.