双曲线的焦点在x轴上,离心率为2,F1,F2为他的左右焦点,点p是双曲线上一点,且角F1PF2等于60度,三角形F1PF2面积为12根号3,求双曲线标方

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:56:28
双曲线的焦点在x轴上,离心率为2,F1,F2为他的左右焦点,点p是双曲线上一点,且角F1PF2等于60度,三角形F1PF2面积为12根号3,求双曲线标方
xQMO@+{\]c&IxF9 4iP[.PZB N[xbxR;=X![A`M {P̦.S I&dbwcݽ] z o2Ό"L;͔ډW&޿Y?^rb@C:PkR7r+I%WWfX@I|Mƭ _PF990ѡZ*zHU(A^>yznJ>P lS?6p\9ƌ N`~DhGNQ9oWb

双曲线的焦点在x轴上,离心率为2,F1,F2为他的左右焦点,点p是双曲线上一点,且角F1PF2等于60度,三角形F1PF2面积为12根号3,求双曲线标方
双曲线的焦点在x轴上,离心率为2,F1,F2为他的左右焦点,点p是双曲线上一点,且角F1PF2等于60度,
三角形F1PF2面积为12根号3,求双曲线标方

双曲线的焦点在x轴上,离心率为2,F1,F2为他的左右焦点,点p是双曲线上一点,且角F1PF2等于60度,三角形F1PF2面积为12根号3,求双曲线标方
双曲线焦点三角形的面积 S=b^2*cot(∠F1PF2/2)=√3*b^2=12√3,
所以 b^2=12 (1)
又离心率 e=c/a=2,所以 c^2/a^2=(a^2+b^2)/a^2=4,(2)
解得 a^2=4,b^2=12 ,
因此,双曲线的标准方程为 x^2/4-y^2/12=1 .

中心在坐标原点的双曲线焦点F1,F2在x轴上,离心率为根号2,经过点P(4,-根号10).求双曲线方程 已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根2.且过点(4,-根10)已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根2.且过点M(4,-根10)(1)求双曲线方程(2)若点M(3.m)在双曲线上.求 已知有公共焦点的椭圆和双曲线中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,双曲线离心率的值为2,则该椭圆的离心率的 有公共焦点的双曲线和椭圆,中心均为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限交于P,三角形PF2F1是以PF1为底的等腰三角形.若|PF1|=10,双曲线离心率取值范围(1,2)则椭圆离心率取 已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1PF2的面积为2√3,又双曲线离心率为2,求该双曲线的方程 双曲线数学题1.已知双曲线的方程是16x²-9y²=144设F1,F2是双曲线的左右焦点,点P在双曲线上,且|PF1||PF2|=32求角F1PF2的大小2.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过 1.已知中心在原点,焦点在x轴上的椭圆,离心率e=√2/2(注:“√”为根号.),且经过抛物线x^2=4y的焦点,求椭圆的标准方程.2.已知双曲线的中心在原点,左、右焦点F1和F2在坐标轴上,离心率为√2 ,且 已知点F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,以线段F1F2为边作正三角形MF1F2.若边MF1的中点在双曲线上,则双曲线的离心率是多少 双曲线x^2/a^2-y^2/b^2=1 ,若p到双曲线两准线距离之比为5:3且F1PF2=120 则离心率?p在双曲线上,f1,f1为焦点 已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1PF2的面积为2√3,若(PF1),1/4(F1F2)^2,(PF2)成等差数列,则双曲线离心率为 *( )代表绝对值 双曲线的焦点在x轴上,离心率为2,F1,F2为他的左右焦点,点p是双曲线上一点,且角F1PF2等于60度,三角形F1PF2面积为12根号3,求双曲线标方 已知中心在原点,焦点在X轴上的椭圆与双曲线有共同的焦点F1,F2,且/F1F2/=2倍根号3,又椭圆的半长轴长与双曲线的半实轴长之差等于4,且它们的离心率之比为3:71.求椭圆与双曲线的方程2.若P是它 已知中心在原点,焦点在X轴上的椭圆与双曲线有共同的焦点F1,F2,且/F1F2/=2倍根号13,又椭圆的半长轴长与双曲线的半实轴长之差等于4,且它们的离心率之比为3:71.求椭圆与双曲线的方程2.若P是它 设双曲线焦点在y轴上,两条渐近线为y=±1÷2x,则该双曲线的离心率为 设双曲线焦点在y轴上,两条渐近线为y=±1÷2x,则该双曲线的离心率为 已知中心在坐标原点,焦点都在x轴上的双曲线M,离心率e为2,左顶点与右焦点的距离为6已知中心在坐标原点,焦点都在x轴上的双曲线M,离心率e为2,左顶点与右焦点的距离为6求双曲线M的标准 已知双曲线的中心在原点,焦点在x轴上,离心率e=根号3,焦距为2又根号3,求该双曲线方程. 与双曲线x^2/9-y^2/16=1有共同的渐近线,且焦点在y轴上的双曲线的离心率为