已知双曲线C的方程是y2/16-x2/20=1 (1)求曲线C的焦点f1f2的坐标 (2)如果双曲线C上已知双曲线C的方程是y2/16-x2/20=1(1)求曲线C的焦点f1f2的坐标(2)如果双曲线C上一点P与焦点f1的距离等于8 求P与
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:31:25
x){}KPeiiF@ӹ-hW0|ټ9"ڎ{:5@eF@eXlz8Ɏ>6>_',my,&2`j)\Ff
C8#[C3D[HodR BsVTػn:f
nF@&XHf=٩PSfX$jjlj,``i~qAb( Ni
已知双曲线C的方程是y2/16-x2/20=1 (1)求曲线C的焦点f1f2的坐标 (2)如果双曲线C上已知双曲线C的方程是y2/16-x2/20=1(1)求曲线C的焦点f1f2的坐标(2)如果双曲线C上一点P与焦点f1的距离等于8 求P与
已知双曲线C的方程是y2/16-x2/20=1 (1)求曲线C的焦点f1f2的坐标 (2)如果双曲线C上
已知双曲线C的方程是y2/16-x2/20=1
(1)求曲线C的焦点f1f2的坐标
(2)如果双曲线C上一点P与焦点f1的距离等于8 求P与焦点f2的距离
已知双曲线C的方程是y2/16-x2/20=1 (1)求曲线C的焦点f1f2的坐标 (2)如果双曲线C上已知双曲线C的方程是y2/16-x2/20=1(1)求曲线C的焦点f1f2的坐标(2)如果双曲线C上一点P与焦点f1的距离等于8 求P与
1.a^2=16 a=4
b^2=20 c^2=a^2+b^2=36 c=6 焦点在y轴上
F1(0,-6 ) F2(0,6)
2.双曲线定义 ||PF1|-|PF2||=2a |8-|PF2||=8
|PF2|=0或|PF2|=16
已知双曲线C的方程是y2/16-x2/20=1 (1)求曲线C的焦点f1f2的坐标 (2)如果双曲线C上已知双曲线C的方程是y2/16-x2/20=1(1)求曲线C的焦点f1f2的坐标(2)如果双曲线C上一点P与焦点f1的距离等于8 求P与
已知直线L与圆x2+y2+2x=0相切于点T,且于双曲线C:x2-y2=1相交于A、B两点,若T是线段AB的中点,求直线L的方程%
已知双曲线的方程是16x2-9y2=144.(1)求这双曲线的焦点坐标、离心率和渐近线方程;
已知双曲线x2/2-y2/a=1的一条渐近线方程为y=根号2x,则双曲线的离心率是
1.已知抛物线y2=8x的焦点与双曲线x2/a2-y2=1的一个焦点重合,则该双曲线的离心率为2.若直线l:y=kx+1被圆C:x2+y2-2x-3=0截得的弦最短,则直线l的方程是
已知双曲线C:x2/a2-y2/b2=1焦距为10,点P(2,1)在C的渐进线上,则C的方程
已知抛物线x2=2py(p>0)的焦点是双曲线4y2-4/3x2=1的一个焦点,求抛物线的方程
只是题目看不懂 已知双曲线的方程是16x2-9y2=144,已知双曲线的方程是16x2-9y2=144,设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.且|PF1|·|PF2|=32是两个向量的乘积
已知椭圆C:x2/a2+y2/b2=1与椭圆x2/4+y2/8=1有相同的离心率,则椭圆C的方程可能是()A、X2/8+Y2/4=m2(m不等于0)B、X2/16+Y2/64=1C、X2/8+Y2/2=1D、以上都不可能麻烦简单说明
已知双曲线C:x2/a2-y2/b2=1(a>0,b>0)与椭圆x2/18=y2/14=1有共同焦点,点A(3,根号7)求双曲线C的方程 以P(1,2)为中心昨双曲线C的一条弦AB,求弦AB所在直线的方程
已知双曲线C的方程为x2/a2-y2/b2=1,a>0,b>0,离心率为2/根号13.1.求双曲线方程 2.若A,B分别是两渐近线上点,AB是位于第一、第四象限间的动弦,三角形AOB的面积为定值27/4,且双曲线C经过AB的一个三等分
与双曲线x2/16-y2/9=1共渐近线且过点A(2,-3)的双曲线方程为?
已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为
已知双曲线x2-y2=1和x2+y2-8x+7=0都相切的圆的圆心轨迹是( )与两圆x2+y2=1和x2+y2-8x+7=0都相切的圆的圆心轨迹是( ) A.两个椭圆 B.两条双曲线 C.一条双曲线和一条直线 D.一个椭圆与一条双曲线
已知椭圆方程x2/4+y2/3==1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率是
已知双曲线x2/a2-y2/b2=1的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为
已知双曲线的方程为x2-y2/4=1 如图,点A的坐标为(-根号5,0)B是圆x2+(y-根号5)2=1上的一点M在双曲线
解析几何:双曲线、弦、轨迹方程已知双曲线x2-(y2/2)=1求过点A(2,1)的诸弦中点M的轨迹方程