已知抛物线y^2=4x的焦点F,过点K(-1,0)的直线与抛物线交与A.B两点,点A关于x轴的对称(1)证明点F在直线BD上(2)设向量FA?揩}B=8/9,求三角形BDK的内切圆M的方程 点为D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:52:23
xݒn@_-֘84B\H Rsm]{/$D*\ZJޅzBk<_R.>vO7bzOfnMԮDuG}la5oi%WsWz>۶ lf ۉVsOyz
s,hCڐwOZam>P7};WFx
Ni" ʂi.}ZR&wNV!Q"[!r2mtӡV%&'re-syw]+^R
~wF-SfS,m߆ׄy/Lq0`uV5!i<}[G*Tm١%>T5bŨa16PP.abJz(tl67RC%W= &9
已知抛物线y^2=4x的焦点F,过点K(-1,0)的直线与抛物线交与A.B两点,点A关于x轴的对称(1)证明点F在直线BD上(2)设向量FA?揩}B=8/9,求三角形BDK的内切圆M的方程 点为D
已知抛物线y^2=4x的焦点F,过点K(-1,0)的直线与抛物线交与A.B两点,点A关于x轴的对称(1)证明点F在直线BD上(2)设向量FA?揩}B=8/9,求三角形BDK的内切圆M的方程 点为D
已知抛物线y^2=4x的焦点F,过点K(-1,0)的直线与抛物线交与A.B两点,点A关于x轴的对称(1)证明点F在直线BD上(2)设向量FA?揩}B=8/9,求三角形BDK的内切圆M的方程 点为D
设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0).⑴、证明:将L:x=my-1带入y?x并整理得y?my+4=0,从而y1+y2=4m,y1y2=4.直线BD的斜率为k=(y2+y1)/(x2-x1)=(y2+y1)/[(my2-1)-(my1-1)]=4m/[m(y2-y1)]=4/(y2-y1) ∴直线BD的方程为y-y2=[4/(y2-y1)]?獂-x2)=[4/(y2-y1)]?獂-y2?) 令y=0,解得x=y1y2/4=1,所以点F(1,0)在直线BD上.
已知抛物线C:y2(方)=4x的焦点为F,过点K(-1,0)的直线L与C相交于A.B两点,点A关于X轴的对称点为D.抛物线C:y^2=4x①的焦点为F(1,0),设过点K(-1,0)的直线L:x=my-1,
已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的.已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,
【紧急求】已知抛物线c :y^2=4x,直线过抛物线的焦点f且与该抛物线交于a、b两点 (点a在第一象限) (...【紧急求】已知抛物线c :y^2=4x,直线过抛物线的焦点f且与该抛物线交于a、b两点 (点
15,已知F是抛物线C:y^2=4x的焦点,过F且斜率为K(K>0)的直线交C于A,B两点,设向量AF=3向量FB,则K等于?
已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B使抛物线上一点Q,总是存在QA⊥QB,求k的取值范围
已知抛物线y^2=4x的焦点F,过点K(-1,0)的直线与抛物线交与A.B两点,点A关于x轴的对称(1)证明点F在直线BD上(2)设向量FA?揩}B=8/9,求三角形BDK的内切圆M的方程 点为D
已知抛物线y^2=4x的焦点F,过点K(-1,0)的直线与抛物线交与A.B两点,点A关于x轴的对称(1)证明点F在直线BD上(2)设向量FA?揩}B=8/9,求三角形BDK的内切圆M的方程 点为D
已知抛物线的方程y^2=4x,直线过定点P(-2,1),斜率为k,(1)求抛物线的焦点F到直线x+2=0的距离(2)若直线与抛物线有公共点,求k的取值范围
已知直线Y=k(x+2)(k>0)与焦点为F的抛物线y方=8X相交于A,B点 若AF=4BF,则k
已知直线Y=k(x+2)(k>0)与焦点为F的抛物线y方=8X相交于A,B点 若AF=4BF,则k
已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线l交抛物线于AB两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0) (1)求k的取值范围;(2)求证:x0
已知抛物线y^2=4x,F为抛物线的焦点且PQ为过焦点的弦,若|PQ|=8求△OPQ的面积
圆锥曲线题目已知过抛物线y²=4x焦点F的直线与抛物线交A、B两点,过原点O的直线AO交抛物线准线于C点(2)求[AB]+[BC]的最小值
已知抛物线y^2=4x的焦点为F,过点(-1,0)的直线交抛物线与A,B,A关于x轴对称点为D,求证F在直线BD上
已知以F为焦点的抛物线y平方=2px过点4,4 求抛物线标准方程.
已知抛物线y^2=4x,F是焦点,直线l是经过点F的任意直线
已知抛物线C:y^2=4x的准线与x轴交于M点过M点斜率为k的直线l与抛物线C相交于AB两点1 F为抛物线C的焦点 若模AM=5/4模AF 求K的值2 是否存在这样一个K,使得抛物线C上总存在Q,且QA垂直QB若存在请求
已知抛物线Y^2=4x的焦点为F,P(3,a)为抛物线上的一点,求|PF|的长,(2)过点F作倾斜角为30度的直线交抛物线...已知抛物线Y^2=4x的焦点为F,P(3,a)为抛物线上的一点,求|PF|的长,(2)过点F作倾斜角为30度的直