奥数题带答案今晚就要,闲人勿扰!高分悬赏!我要五年级的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 17:51:45
奥数题带答案今晚就要,闲人勿扰!高分悬赏!我要五年级的
x}[WI_a?0Buexu>OaCYyI$@`̭ p y?*IOEdJgu7TeFFFFFFFDFճgJWir魽k7M\=ޛgQe6~/qeJt]Q4xF[NڗUm0Mt ggct}nYH:>o.-zY!iS8 l^vRF4oPQ6>^,u?:ieŌ[蜜'g~N,:AgC.) _n-OUY++?oX/ u*所%/C*V%FOig^LҔDD[ԄGFCo›gF 0rnj"r 7;%xq+"J70>^6-$Թ^jPtJCdl 7I Wމ/{W_|ꎅw&`ׄ5Mu.z$ٟL-,cXn42z;=VX,6hZFgR_|Sp:PgV?v` gM`tgnV] @itg˙vuWy,n -u (p8Be6ƒHOa6/z+ V49"Ftpn.@3[h`j5M1GIuA*!~wUebsD q(cbE]B|i^)x.;NG0_|tk<M[24s@] -OXc +(SUNéT)K܁;Tߧ( , "hΣ6Y4;QMz2j$:^X8L<4qN襚}kM׃._q;T¦oSa*ҋl /9J<,zj@Dnv+!fnv͑گ=/QEaz2@ 4(^-,~i,86hi9#kۭ_oъoVR[z&̧P$R.U08 ѝ6PnɾuO?2\ H;9׋0Q5lx`fSkaɳ· _,]OHk4)4y0Qn.EP3ZO6xt4]l]+ma.EcڥJ Q3dBO Z;Z0RfF' yS2y<_@ K,G׵Q^iĖAx%7V~{IGEfGX|f{.~ax/7L.q}O5kW<&^P_ Q< @M֌b_o`>nj]mnU=ԥ k,:1Z_ׂ|{_/F|Z!7}4xLP_U', ZBż<{xOM16 sMTS^j/ imDPufۓqd }ڳv8.`1^bJE^* HoɀO`{$~{>~=.&f b ?UuhrQ%/F\nmR|oj_ry,b<#H:iwo6{O:Ms 8TCr ~T^vd/Gy'j@oN9O hAOTHh`3QXkP'u4hMp9 {{#1^yV_]0۽CK.ks\m7-Y:gw,@r-JcП!Py*Gǟp(/b0G|.@#|vh5e1 * bCO-gCrȵ 6?\FN Sc - +hEEGgø[5B<4 s Wa]mkEWHgJ0"rXPdyɴvsL: Gݔ#&2HV`EKi `DJˆSlyýsSTif%.-ϤW8 Kw"InQ&FOd*lf ҡċU:':/QQ mlGݹ׽ 7ܴZ%bXQz73מ_btTr Ƃyخ`9(yX6Q9̀tMrO݋NajM1@V}IB)7cR]x}`-փ>1 ")N ,LXUd0V4vfRT)YiVXxIL/z„ &$D$^J6$ڕR;UnB&>),)Y: *Q7GIyS#`:vZ "(Ea>{RYreY!Q[l3Yi~YשJ_{--NK\9sXv`VEUZF\6a"nd цv*Fh hDM%toa[ts4?śAxC<EUli=͐6Fi ,^ Rn/Tcd D`vq[Y.$%. ((l/"WKt$]r^3h;[ im{mFI34Wȡvs>귺Nm?‚:'veŀ2ȊNĝ8 X=ld?"İP؁(a'n1C&v /C4f^c#hFki"NpICmL:R5!F}o.N8dXYXbMƚUl%.`('[5A_WDv"l:4fbKPwuCMY"6{b\#f]3{a 5D\*-]M*(t&d'GiMiϒsH9^ŵ1zϟVW]E@Q6Sa$1Ѕ\ Ϫg릋gq edFho֎}Hbˡ)O`4Ӝ68Luo{n1X,qC N: ) qIXC!TK. r&1iPjAب9AzWgg)p/168suNI:BG5RRUv畅 5  z4nA6m`$ˢ39צ_Hajwc& Ytpm2+ki'>C@6V?0(E;RQ7ߠ)t Ԉ8 .4m?.4S+f:u6Ӥ;X;CZoV."Voj-ڣS@!٘ aFЧiպ@Vg_,[iRJ0GW8ޏO>2~p,ʰɢ[I]ご;qi<#t(P7vޢI0o6D{͏! Ճ+ZZOxcR/F5l9j |AadO}s-%VQ|6y6ybܲPI]vY n~u .3W$5[㾷A_'|7!<~k/5fR}+o1K^^なlcDwO[, ܜ}@}mxF/ x?͘) v[ Hi89 ?9 @+u'|&.y:V(9뙹Qw 8L:{Ф'2Jԩ.m44,ձmi yM]Dh: < JjS'܌=gS=t+y./TkOo.x02O̖"@N F@%b$M4JjV+#7vxe֡E̞D,+92>F-ZZt֛Ժ\ڑ:2í<։eqM1;"W%.2Ek[`qʥq21roQ\Ħzvg@`ҩR͢f5,Tkb^=E񩧷^%C ST+;YIN}+'O&+͉~"?Gǭ2)Q?]Mz"ᣉ Hjy7bgE!=ԁX>ʂaa;K= Qt]rf+# ^O>,ˇ$#0^ ՉXҦݼOhZ9ˏL!4C˺4Pr2 6=ɖxlaFY03E5r !̅ zAQP;Q In6ݯ|QJԓpT -b0V}Y>?%b^B7i^J޿xBt'1/~004mǿi!jstCXg&^E/$$n><]!)=y _b&97(7NR+i0`eͶy`!!D;0ۼ$NxQ Q eҸM7AADIT u< zjrγ 1֙\/ca J')1X+֘h5!:N;y Ţ +D{X*jSMd2д3'02u9oM dkV|wXödYm`~xiI|m Ao \o( 9CP :g3J ֝{y&R~Fhz;"I׀g73=95ˬ+*2#5u mrZz FlQI3aӇEY1E`K?s1W?IP8#3;#3:pggM4xF;^4բ}3fx(\ײe%xfZ/ÚPW/Lrd#v9L.\%;E=tW9s},˷_2[)JAᯡ=Y2|YX0{ K5Av4oCC0TzH"6h!pT7&NLs2Vg3y*(T3vL"=(sUSMn9N)ID>8GGRʕrd|$7n_ġ@jsx 5[9zWӗ*i粎ycX!`$bv癔;uS"拉drz4T}&Rf&7"T$`h{wi>ȍ:븺AzK]ϰx!A]{#80r ɴKsfyu]`IpS}u_=w RM@R&IJTN񮋎*i[VYE5QdP`叜wo+2BG ?p/AYPYL듄jxAO2RTz#T~"ǮuUOr4Щ.Cd|lViy[yf엜7?QUΤ&|\EgV{{ͨ!vlc55!TC^m VU/CC:?qUHxnOL(RBl43) сvf|Nt( zЕˌt*G+WNa ʲ/Yz_׻&! vQc(95ߟkW(b?43 "JA%Қ  X>6.3U5bu $p|È(-?3@%LpS .o6 #*Y悝ŕ0s3`ڭb;u^0bTKCf|v-C$w<.?Lx ˑ⭊F ݪ< ߉IʈF^Ѥx ڡ̀E *r)}PǕvb!\FH[[3P6NA̻ :xĭG a PDBli ;? ޞmٌ]g3676ͪw5jL{7(h6݂Ĥ:cm\M&n.̧x5}7KWPc퓰 [`ӜM+ڽ)jY}oFoL/j2bK{)`DQ3Uӿ,xO *8_ZJ9ջ}OzⓏFRbW\E=jXiFrVlp$bm&`Z๊*vd{IL̴zxK, /9"ኌ| l‚N|ċ_^3E[6ʮӃ/#fo?UA,897VT ,g|VĪx5{ f^K Zݶ$80ѱ '8d0WtJ>( K/Kob28`HF.H.PdzMzrW^QrڗZf=k3W?Qn'@$'@p2.'Ώ_ :=6c/uN@@ DG+?cRfNJҿKpVr9KuBξFMu{4W3Ufd 57I 7!ʷyqW ŕ&SѾ[_,t[]aCH:ޕQWcX{W&1?j$G{fCA"'hR[BaK5۩k6a FOp3glI~G T<\o)Q0xWIjd%J|kz'"bҐ?ǥ?מӹz?pGK:od(R5|W_/r'[9nV ^-p  qi<4EJJrrd4Ώ(Y5~Dn4ų \,#5xJӲAYi3N^g'7F&2UK~cIՑYlj(}0Dv% +Cc aqf پ%KMQSbr/ lg$=+&Gf p@,<@L:a;dKjx)IC߄ N 4 &+1?7rlkw$q$;ۨ쑂~p(!n>ć ky67(h6o&eP8p'h)8iYˁHޯb}O .uzШz_?3Dw.D0 YuxUuwIB=ŵ2ꁆ(:VbR2 }F$iA{:ǜ9DlNs 8-ޭ\PM5\jz0%Pga_

奥数题带答案今晚就要,闲人勿扰!高分悬赏!我要五年级的
奥数题带答案
今晚就要,闲人勿扰!高分悬赏!
我要五年级的

奥数题带答案今晚就要,闲人勿扰!高分悬赏!我要五年级的
这下总该满意了吧
小学五年级经典奥数题(一)
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
答案:
1.设有1元的x张,1角的(28-x)张
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3张,一角的25张.
2.设1元的有x张,2元的(x-2)张,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20张,2元18张,5元12张.
3.设有7元和5元各x张,3元的(400-2x)张
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160张,7元、5元各120张.
4.货物总数:(3024-2520)÷2=252(箱)
设有大汽车x辆,小汽车(18-x)辆
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽车6辆,小汽车12辆.
5.天数=112÷14=8天
设有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天.
6.西瓜数:(290-250)÷0.05=800千克
设有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克.
7.甲得分:(152+16)÷2=84分
乙:152-84=68分
设甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
设乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次.
8.设他答对x道题
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答对了18题.
小学五年级经典奥数题(二)
1.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地.每小时60千米的速度行驶了几小时?
2.笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚.笼中原有兔、鸡各多少只?
3.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀.蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀,每种小虫各几只?
4.学雷锋活动中,同学们共做好事240件,大同学每人做好事8件,小同学每人做好事3件,他们平均每人做好事6件.参加这次活动的小同学有多少人?
5.某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?
答案:
1.设每小时60千米的速度行驶了x小时.
60x+(60+15)(7-x)=465
60x+525-75x=465
525-15x=465
15x=60
x=4
答:每小时60千米的速度行驶了4小时.
2.兔换成鸡,每只就减少了2只脚.
(100-92)/2=4只,
兔子有4只.
(100-4*4)/2=42只
答:兔子有4只,鸡有42只.
3.设蜘蛛18只,蜻蜓y只,蝉z只.
三种小虫共18只,得:
x+y+z=18……a式
有118条腿,得:
8x+6y+6z=118……b式
有20对翅膀,得:
2y+z=20……c式
将b式-6*a式,得:
8x+6y+6z-6(x+y+z)=118-6*18
2x=10
x=5
蜘蛛有5只,
则蜻蜓和蝉共有18-5=13只.
再将z化为(13-y)只.
再代入c式,得:
2y+13-y=20
y=7
蜻蜓有7只.
蝉有18-5-7=6只.
答:蜘蛛有5只,蜻蜓有7只,蝉有6只.
4.同学们共做好事240件,他们平均每人做好事6件,
说明他们共有240/6=40人
设大同学有x人,小同学有(40-x)人.
8x+3(40-x)=240
8x+120-3x=240
5x+120=240
5x=120
x=24
40-x=16
答:大同学有24人,小同学有16人.
5.设男生x人,女生(42-x)人.
3x-2(42-x)=56
3x+2x-84=56
5x=140
x=28
42-x=14
答:男生28人,女生14人
五年级奥数题
1. 765×213÷27+765×327÷27
原式=765÷27×(213+327)= 765÷27×540=765×20=15300

2. (9999+9997+…+9001)-(1+3+…+999)
原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)
=9000+9000+…….+9000 (500个9000)
=4500000
3.19981999×19991998-19981998×19991999
(19981998+1)×19991998-19981998×19991999
=19981998×19991998-19981998×19991999+19991998
=19991998-19981998
=10000

4.(873×477-198)÷(476×874+199)
873×477-198=476×874+199
因此原式=1

5.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1
原式=1999×(2000-1998)+1997×(1998-1996)+…
+3×(4-2)+2×1
=(1999+1997+…+3+1)×2=2000000.
6.297+293+289+…+209
(209+297)*23/2=5819
7.计算:
原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)
=50*(1/99)=50/99
8.

原式=(1*2*3)/(2*3*4)=1/4
9. 有7个数,它们的平均数是18.去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20.求去掉的两个数的乘积.
7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33.求第三个数.
28×3+33×5-30×7=39.
11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?
设第二组有x个数,则63+11x=8×(9+x),解得x=3.
12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分.因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分).
13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店.妈妈平均每星期去这两个商店几次?(用小数表示)
每20天去9次,9÷20×7=3.15(次).
14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比.
以甲数为7份,则乙、丙两数共13×2=26(份)
所以甲乙丙的平均数是(26+7)/3=11(份)
因此甲乙丙三数的平均数与甲数之比是11:7.
15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个.已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个.糊得最快的同学最多糊了多少个?
当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人).因此糊得最快的同学最多糊了
74×6-70×5=94(个).
16. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进.问:甲、乙两班谁将获胜?
快速行走的路程越长,所用时间越短.甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜.
17. 轮船从A城到B城需行3天,而从B城到A城需行4天.从A城放一个无动力的木筏,它漂到B城需多少天?
轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍.所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天.
18. 小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同.也就是说,小强第二次比第一次少走4分.由
(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米).
19. 小明和小军分别从甲、乙两地同时出发,相向而行.若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇.甲、乙两地相距多少千米?
每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离.所以甲、乙两地相距6×4=24(千米)
20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.
因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇.
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米.因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米.
21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?
9∶24.甲车到达C站时,乙车还需16-5=11(时)才能到达C站.乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24.
22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?
快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11
23. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙.问:两人每秒各跑多少米?
甲乙速度差为10/5=2
速度比为(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米.
24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米.问:
(1) A, B相距多少米?
(2)如果丙从A跑到B用24秒,那么甲的速度是多少?
(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度


25. 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明.已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?
设车速为a,小光的速度为b,则小明骑车的速度为3b.根据追及问题“追及时间×速度差=追及距离”,可列方程
10(a-b)=20(a-3b),
解得a=5b,即车速是小光速度的5倍.小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车.
26. 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?
狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间.所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步).
27. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:
(1)火车速度是甲的速度的几倍?
(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?
(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;
(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒).
28. 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达.求甲、乙两地的距离.


29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天.问:甲、乙单独干这件工作各需多少天?
甲需要(7*3-5)/2=8(天)
乙需要(6*7-2*5)/2=16(天)
30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完.如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?

31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3.这本书共有多少页?
开始读了3/7 后来总共读了5/8
33/(5/8-3/7)=33/(11/56)=56*3=168页
32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成.如果甲做3时后由乙接着做,那么还需多少时间才能完成?
甲做2小时的等于乙做6小时的,所以乙单独做需要
6*3+12=30(小时) 甲单独做需要10小时
因此乙还需要(1-3/10)/(1/30)=21天才可以完成.

33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件.这批零件共有多少个?
甲和乙的工作时间比为4:5,所以工作效率比是5:4
工作量的比也5:4,把甲做的看作5份,乙做的看作4份
那么甲比乙多1份,就是20个.因此9份就是180个
所以这批零件共180个
34.挖一条水渠,甲、乙两队合挖要6天完成.甲队先挖3天,乙队接着
根据条件,甲挖6天乙挖2天可挖这条水渠的3/5
所以乙挖4天能挖2/5
因此乙1天能挖1/10,即乙单独挖需要10天.
甲单独挖需要1/(1/6-1/10)=15天.
35. 修一段公路,甲队独做要用40天,乙队独做要用24天.现在两队同时从两端开工,结果在距中点750米处相遇.这段公路长多少米?
36. 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成.现在只能增加2个人,那么完成这项工程需要多少天?
将1人1天完成的工作量称为1份.调来3人与调来8人相比,10天少完成(8-3)×10=50(份).这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份).调来2人需100÷(2+2)=25(天).
37.


三角形AOB和三角形DOC的面积和为长方形的50%
所以三角形AOB占32%
16÷32%=50

38.
1/2*1/3=1/6
所以三角形ABC的面积是三角形AED面积的6倍.

39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等.问:哪几个图中的阴影部分与图(1)阴影部分面积相等?


(2) (4) (7) (8) (9)

40. 观察下列各串数的规律,在括号中填入适当的数
2,5,11,23,47,( ),……
括号内填95
规律:数列里地每一项都等于它前面一项的2倍减1
41. 在下面的数表中,上、下两行都是等差数列.上、下对应的两个数字中,大数减小数的差最小是几?
1000-1=999
997-995=992
每次减少7,999/7=142……5
所以下面减上面最小是5
1333-1=1332 1332/7=190……2
所以上面减下面最小是2
因此这个差最小是2.
42.如果四位数6□□8能被73整除,那么商是多少?
估计这个商的十位应该是8,看个位可以知道是6
因此这个商是86.
43. 求各位数字都是 7,并能被63整除的最小自然数.
63=7*9
所以至少要9个7才行(因为各位数字之和必须是9的倍数)
44. 1×2×3×…×15能否被 9009整除?
能.
将9009分解质因数
9009=3*3*7*11*13
45. 能否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?
不能.因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成.
46. 有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数.
最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商.最大的约数与第二大
47.100以内约数个数最多的自然数有五个,它们分别是几?
如果恰有一个质因数,那么约数最多的是26=64,有7个约数;
如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;
如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数.
所以100以内约数最多的自然数是60,72,84,90和96.
48. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质.
6,10,15
49. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?
42份;每份有苹果8个,桔子6个,梨5个.
50. 三个连续自然数的最小公倍数是168,求这三个数.
6,7,8. 提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积.而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半.
51. 一副扑克牌共54张,最上面的一张是红桃K.如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?
因为[54,12]=108,所以每移动108张牌,又回到原来的状况.又因为每次移动12张牌,所以至少移动108÷12=9(次).
52. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍.”你知道爷爷和小明现在的年龄吗?
爷爷70岁,小明10岁.提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的.(60岁)
53. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来.
11,13,17,23,37,47.
54. 在放暑假的8月份,小明有五天是在姥姥家过的.这五天的日期除一天是合数外,其它四天的日期都是质数.这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1.问:小明是哪几天在姥姥家住的?
设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1).因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31.经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日.
55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数.
3,74;18,37.
提示:三个数字相同的三位数必有因数111.因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数.
56. 在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开.问:长度是1厘米的短木棍有多少根?



因为100能被5整除,所以可以看做都是自左向右染色.因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现.一个周期的情况如下图所示:
由上图知道,一个周期内有2根1厘米的木棍.所以三个周期即90厘米有6根,最后10厘米有1根,共7根.

57. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元.问:商品的购入价是多少元?
8000元.按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元.
58. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%.乙、丙两桶哪桶水多?
乙桶多.
59. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人.如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?
只做对两道题的人数为(10+13+15) -25 -2×1=11(人),
只做对一道题的人数为25-11-1=13(人).

60. 学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项.根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品.问:最多有几人获奖?最少有几人获奖?
共有13人次获奖,故最多有13人获奖.又每人最多参加两项,即最多获两项奖,因此最少有7人获奖.
61. 在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?
因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36).所求自然数共有 1000-(31+10)+3=962(个).

62. 用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?
4*5*5=100个
63. 要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?
6*6*6=216种
64. 已知15120=24×33×5×7,问:15120共有多少个不同的约数?
15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4, 2, 2种,所以共有约数5×4×2×2=80(个).
65. 大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?
他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种.所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种).
66. 在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法.)
80种.提示:从A到B共有10条不同的路线,每条路线长5个线段.每次走一个或两个线段,每条路线有8种走法,所以不同走法共有 8×10=80(种).
67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?
5*4*3=60种
68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?
5*4*3=60种