如图,△ABC是等腰直角三角形,其中∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E求证:BD=2CE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:51:01
如图,△ABC是等腰直角三角形,其中∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E求证:BD=2CE
如图,△ABC是等腰直角三角形,其中∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E
求证:BD=2CE
如图,△ABC是等腰直角三角形,其中∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E求证:BD=2CE
证明:延长CE、 BA交于点F
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD=90°
∠CFA+∠FCA=90°
所以∠ABD=∠FCA
在RT△CAF和RT△BAD中
因为 ∠ABD=∠FCA(已证)
AC=AB (已知)
∠CAF=∠BAD=90°
所以RT△CAF≌RT△BAD(ASA)
所以BD=CF
又因为CF=2CE
所以BE=2CE
楼主啊!!~~~这种问题没必要用悬赏吧。。。。。基本上有第一个回答。。。后面的就可以GWN了。。。。。
证明:延长CE、 BA交于点F
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD...
全部展开
证明:延长CE、 BA交于点F
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD=90°
∠CFA+∠FCA=90°
所以∠ABD=∠FCA
在RT△CAF和RT△BAD中
因为 ∠ABD=∠FCA(已证)
AC=AB (已知)
∠CAF=∠BAD=90°
所以RT△CAF≌RT△BAD(ASA)
所以BD=CF
又因为CF=2CE
所以BE=2CE
收起