若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:41:49
若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx
x){ѽ4MB:Ovt?:/7>ѧc @ FOvt =<;P B

若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx
若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx

若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx
令 y=π/2-x,则x=π/2-y
∫(π/2~0)f(cosx)dx=∫(0~π/2) f(cos(π/2-y))d(π/2-y)
=∫(0~π/2) -f(siny)dy
=-∫(0~π/2) f(siny)dy
=∫(π/2~0)f(siny)dy
=∫(π/2~0)f(sinx)dx
请采纳答案,支持我一下.

f(x)在(0.1)上连续且单调增,证明∫[0,1]f(x)dx f(x)在(0,1)上连续,证明 若函数f(x)在【0,1】上连续,证明∫f(sinx)=∫f(cosx) 0 若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx 高数证明题:设函数f(x)在区间[0,1]上连续,证明 f(x)在[a,b]上连续可导,f'(x)≤0 若F(x)=1/x-a,定积分∫f(t)dt[a,x] 证明在(a,b)满足F'(x)≤0如题, 高等数学,定积分的运用.若f(x)在(-∝,+∞)上连续而且f(x)=∫(0,x) f(t)dt,证明f(x)≡0; 证明:函数f(x)=sin(x)/x在(0,1)上是一致连续的 设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt 设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt 如果f(x)在[0,1]上连续,证明:∫[0->1][∫[0->x]f(t)dt]dx=∫[0->1](1-x)f(x)dx 设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明 定积分证明题设f(x)在(-∞,+∞)上连续,F(x)=∫(2x-4t)f(t)dt(从0到x),若f(x)为奇函数,(1)证明F(x)为奇函数 (2)讨论F(x)满足什么条件,F(x)在(-∞,+∞)上单调递增 证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0) 一道高数题,证明:设f(x)在[0,1]上连续,且0 高数题求解.设函数f(x)在0到1上闭区间连续,证明 如何证明这个关于定积分的等式?已知f(x)在[0,1]上连续 一道函数连续的证明题f(x)在[0,2a]上连续,f(0)=f(2a).证明 f(x)=f(x+1) 在[0,a]上至少有一个根