设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:00:38
设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)
x=N@FW'HU4) A9 *H4@_]qf Ѧާ 7O [xy_#vCzi@qK\K* #2㱭V:D;

设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)
设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)

设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)
证明:由零点定理,存在d位于(0,1),使得f(d)=0.
令F(x)=x^2f(x),则F(0)=0,F(d)=0,且F(x)在(0,d)上可微.
由Rolle中值定理,存在c位于(0,1),使得F'(c)=0,即
c^2f'(c)+2cf(c)=0,由于c不等于0,除以c即可得到结论.