已知y=(arcsinx)^2, 试证(1-X^2)*y的(n+1)阶导数-(2n-1)*x*y的(n)阶导数-(n-1)^2*y(n-1)阶导数=0.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:33:24
已知y=(arcsinx)^2, 试证(1-X^2)*y的(n+1)阶导数-(2n-1)*x*y的(n)阶导数-(n-1)^2*y(n-1)阶导数=0.
x){}K+m53*3Qx~tF*j6|9c{MݠakUCIiUpq[="}[_`g3@~T5ڧcn&XV1B&%Ov,yoiypu| /6>tÞ=+yi?=ź]6yvlG

已知y=(arcsinx)^2, 试证(1-X^2)*y的(n+1)阶导数-(2n-1)*x*y的(n)阶导数-(n-1)^2*y(n-1)阶导数=0.
已知y=(arcsinx)^2, 试证(1-X^2)*y的(n+1)阶导数-(2n-1)*x*y的(n)阶导数-(n-1)^2*y(n-1)阶导数=0.

已知y=(arcsinx)^2, 试证(1-X^2)*y的(n+1)阶导数-(2n-1)*x*y的(n)阶导数-(n-1)^2*y(n-1)阶导数=0.
y'=2arcsinx/√(1-x²)
(1-x²)y'=2arcsinx=2√y

(1-x²)y'²=4y
两边取n阶导数,并用n阶导数的莱布尼茨公式可得结论