设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵写出A的实对称分解:A=QDQ^T,Q正交,D对角,且D=diag(a1E,...akE),ai是互不相同的特征值。对应的B分块,AB=BA知道对应的Q^TBQ是
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 08:02:39
xRKPWzmbov?`г0+L"|fZ`!9_9L&,!街s{1FK&["ʶP"
zFة霮4YŬ%V
yӫ5))n#^wIXksq.6֪;′z
`v ># 4o'(jCWjBΪ`ɨ@U8!DmBi_Aafν]8@9Ťvÿzw_#_tA>
YAW$T Yh~_p&G :u_ƔsMPhҗ%xq1ˢQ.Sjoi'MGVp.wkVDh}R@r虦C?7vC
}e54h|{9!
设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵写出A的实对称分解:A=QDQ^T,Q正交,D对角,且D=diag(a1E,...akE),ai是互不相同的特征值。对应的B分块,AB=BA知道对应的Q^TBQ是
设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵
写出A的实对称分解:A=QDQ^T,Q正交,D对角,且D=diag(a1E,...akE),ai是互不相同的特征值。
对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而aiE+反对称阵是可逆的,
{(aiE+B)(aiE+B)'=(aiE+B)(aiE-B)=(ai^2)E+BB',BB'为正定或半正定,与数量阵之和为正定}
by mscheng19
设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵写出A的实对称分解:A=QDQ^T,Q正交,D对角,且D=diag(a1E,...akE),ai是互不相同的特征值。对应的B分块,AB=BA知道对应的Q^TBQ是
写出A的实对称分A=QDQ^T,Q正交,D对角,且D=diag(a1E,...,akE),ai是互不相同的特征值.
对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而aiE+反对称阵是可逆的,
{(aiE+B)(aiE+B)'=(aiE+B)(aiE-B)=(ai^2)E+BB',BB'为正定或半正定,与数量阵之和为正定}
设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵
a是反对称矩阵 b实对称矩阵 证明a^2实对称矩阵
如果A是可逆对称(反对称)矩阵,求证A^-1也是对称(反对称)矩阵
设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵写出A的实对称分解:A=QDQ^T,Q正交,D对角,且D=diag(a1E,...akE),ai是互不相同的特征值。对应的B分块,AB=BA知道对应的Q^TBQ是
设A是反对称矩阵,B是对称矩阵,证明A的平方是对称矩阵;AB-BA是对称矩阵
设A是反对称矩阵,B是对称矩阵,证明:(1)A²是对称矩阵,(2)AB-BA是对称矩阵
设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵
设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵
设A是非奇异实对称矩阵,B是反对称矩阵,且AB=BA.证明A +B必是非奇异的
设A是对称矩阵,B是反对称矩阵,证明A∧(-1)B∧2-B∧2A∧(-1)是反对称矩阵
设A是n阶对称矩阵,B是n阶反对称矩阵,则BA-AB是() A、对称矩阵;B、反对称矩阵;C、对角矩阵D三角矩阵
A,B为正定矩阵,C是可逆矩阵.证明A-B为是对称矩阵.
设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA
设A为n阶对称矩阵,B为n阶反对称矩阵,证明(A+B)(A-B)是对称矩阵
设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵
证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B
线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆.
请问:A,B均为n阶实对称矩阵,且都正定,那么AB一定是:A对称矩阵B正定矩阵C可逆矩阵D正交矩阵为什么正确及为什么不正确.