线性代数题目,设A是n阶正交矩阵,且det(A)<0,证明:det(A+E)=0 一楼的解法有问题吧…只能说明A的行列式是-1,即A的所有特征值的积为-1,并不能推得特征值就一定为1和-1,还有可能是2和-1/2呢
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:55:52
xRN@-!`D
HI-aN+~;-T0qƸ{= 'xJ1s]QNbT2&?ڵgGy~spxۜՠ$Usζvqz]-.NqJ*ECnCᅥ,
p3IYH,ݶ479ȸigF0IF
CIgA
A-#QKfSqܹFxH:J+Й|i
AMZ7<5/YIrcn7K4}-W/rB3C{bնUA2agd09|ęڈ_)v3zڋ3#zqb/܇
线性代数题目,设A是n阶正交矩阵,且det(A)<0,证明:det(A+E)=0 一楼的解法有问题吧…只能说明A的行列式是-1,即A的所有特征值的积为-1,并不能推得特征值就一定为1和-1,还有可能是2和-1/2呢
线性代数题目,设A是n阶正交矩阵,且det(A)<0,证明:det(A+E)=0
一楼的解法有问题吧…只能说明A的行列式是-1,即A的所有特征值的积为-1,并不能推得特征值就一定为1和-1,还有可能是2和-1/2呢
线性代数题目,设A是n阶正交矩阵,且det(A)<0,证明:det(A+E)=0 一楼的解法有问题吧…只能说明A的行列式是-1,即A的所有特征值的积为-1,并不能推得特征值就一定为1和-1,还有可能是2和-1/2呢
因为det(A)<0,所以正交矩阵的特征值是正负1,所以A+E的特征值是0和2,所以A+E的行列式=0
你要知道的就是 正交矩阵的特征值只可能是1或-1 ,
若正交阵A地特征值是λ,则A的转置的特征值也为λ,而A的逆的特征值为1/λ.对于正交阵A,它的逆阵等于转置,所以λ=1/λ,所以λ只可能等于1或-1
设A,B都是n阶正交矩阵,且|AB|
线性代数:设A和B都是n阶正交矩阵,则在下列方阵中必是正交矩阵的是:请给出证明,
线性代数问题:设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵.注,(E+A)^(-1)表示(E+A)的逆
线性代数问题:设A是n阶反对称矩阵,证明(E+A)^(-1)(E一A)是正交矩阵.
线性代数问题 设a为n维列向量,且a∧Ta=1,矩阵A=E-2aa∧T,证明A是正交线性代数问题 设a为n维列向量,且a∧Ta=1,矩阵A=E-2aa∧T,证明A是正交矩阵
线性代数:n阶方阵A为正交矩阵,证明A*为正交矩阵
线性代数题目,设A是n阶正交矩阵,且det(A)<0,证明:det(A+E)=0 一楼的解法有问题吧…只能说明A的行列式是-1,即A的所有特征值的积为-1,并不能推得特征值就一定为1和-1,还有可能是2和-1/2呢
设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0
设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0
大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值我是这样证明的因为AAT=E,所以A为正交
线性代数证明题,有关矩阵的,主要关于可逆矩阵、正交矩阵(两题)非常感谢!1、设A.B是两个n阶方阵,且A可逆,B²+AB+A²=0(0是所有元素都为0的矩阵),证明B与A+B都是可逆的,并求出它们的
设Q和P是n阶正交矩阵,证明乘积矩阵QP也是正交矩阵.
线性代数简单题设n阶方阵A是正交阵,证明A的伴随阵A*也是正交阵
设A为n阶矩阵,且有n个正交的特征向量,证明:A为实对称矩阵
设A、B为n阶正交矩阵,且|A|不等于|B|.证明:A+B为不可逆矩阵.
设A与B都是N阶正交矩阵试证AB也是正交矩阵
设A为n阶矩阵,证明A为正交阵的充分必要条件是A*为正交阵
一道线性代数题,请会做的写下答案,100分求答案!设n阶矩阵A、B满足矩阵方程:A*A-AB+E=O其中E是n阶单位矩阵,O是n阶零矩阵,A是正交矩阵.试证:B是对称矩阵