1,y=e^tanxcos^3x,求dy 2,函数y=y(x)由方程e^(x+y)+arctan(xy)=0确定,求dy/dxy=e^tanx*cos^3x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:38:08
1,y=e^tanxcos^3x,求dy 2,函数y=y(x)由方程e^(x+y)+arctan(xy)=0确定,求dy/dxy=e^tanx*cos^3x
xNP_߶>*[l԰UL4W ]d98q5s뤢(鐬YL:⳸y|1ӫ?N=bJY=.ߏg㻵lctMw?.V>~<̞_֪ㄽnE$qщ<(j%(i304J )B}j΃P5oAX{ Bݾ}Ɩdbspmx D\!ƹOϴB2d% 5,ֆE P)!C,I=ɹ621ݒ<Hbo/i:

1,y=e^tanxcos^3x,求dy 2,函数y=y(x)由方程e^(x+y)+arctan(xy)=0确定,求dy/dxy=e^tanx*cos^3x
1,y=e^tanxcos^3x,求dy 2,函数y=y(x)由方程e^(x+y)+arctan(xy)=0确定,求dy/dx
y=e^tanx*cos^3x

1,y=e^tanxcos^3x,求dy 2,函数y=y(x)由方程e^(x+y)+arctan(xy)=0确定,求dy/dxy=e^tanx*cos^3x
步骤如下: