已知数列{an}的前n项和为Sn,a1=3,若数列{Sn+1}是公比为4的等比数列,设 bn=n*4^n+(-1)^nan,n∈N*若数列{bn}是递增数列,求实数λ的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 08:53:11
xRN@-ܕ~.&]Pm3>pB}EŢGf+;θ1.s=sz٠OwqmPhRWn>Nz>|~1XZ1OFd-]^3! ;.&AFݷ
EH@Tg&d4x..OWJBt{>j-!. ̭ "U5B_7mO#xՔ#cGQQLp$448?K3S7VP뜱y2Seѣ7jܗjĄ'7Laj(UKI7yf\đW# 2HA@JyP
rMW(tP=uic&s6«:w9ưꣀ&I2B_;
已知数列{an}的前n项和为Sn,a1=3,若数列{Sn+1}是公比为4的等比数列,设 bn=n*4^n+(-1)^nan,n∈N*若数列{bn}是递增数列,求实数λ的取值范围
已知数列{an}的前n项和为Sn,a1=3,若数列{Sn+1}是公比为4的等比数列,设 bn=n*4^n+(-1)^nan,n∈N*
若数列{bn}是递增数列,求实数λ的取值范围
已知数列{an}的前n项和为Sn,a1=3,若数列{Sn+1}是公比为4的等比数列,设 bn=n*4^n+(-1)^nan,n∈N*若数列{bn}是递增数列,求实数λ的取值范围
已知得Sn+1=4^n,所以Sn=4^n-1,当n≥2时,an=Sn-S(n-1)=3*4^(n-1),又当n=1时,3*4^(n-1)=3=a1,所以对任意的正整数n,an=3*4^(n-1).
若数列{bn}是递增数列,有b(n+1)-bn>0,
即[(n+1)*4^(n+1)+(-1)^(n+1) λ a(n+1)]-[n*4^n+(-1)^nλ an]>0
(n+1)*4^(n+1)-n*4^n>(-1)^n λ(a(n+1)+an)
即(3n+4)*4^n>(-1)^n λ15*4^(n-1)
当n为奇数时,此式恒成立,只要当n为偶数时成立即可.
当n为偶数时,λ
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an
数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式.
【急!已知Sn为数列{an}的前n项和 a1=1 Sn=n的平方 乘以an 求数列{an}的通项公
已知Sn为数列{an}的前n项和,a1=1,Sn=n²•an,求数列{an}的通项公式
已知数列{an}的前N项和为sn a1=1an+1=sn+3n+1,求数列{an}的通项公式
设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列
已知数列an的前n项和为Sn,Sn=三分之一×【a1-1】求a1,a2 .求证数列an是等比数列
已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式
已知Sn为数列的前n项和,a1=2,2Sn=(n+1)an+n-1,求数列an的通项公式
已知数列《an>的前n项和为sn,a1=2,na=sn,求s2011
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an已知数列{an}a1=2前n项和为Sn 且满足Sn +Sn-1=3an 求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,a1=1/2,且Sn=n^2An-n(n-1),求an
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
已知数列的前N项和为SN,A1=2,2sn的平方=2ansn-an(n≥2)求an和sn
已知数列{an} 的前n项和为sn,且an=sn *s(n-1)a1=2/9 求证:{1/sn}为等差