高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001时,求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:46:17
高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001时,求
xRN@~=kζo\RYF2 ?F*@iK8AB4 ;T;k-:ms+3vMWa^P|*(z~\\yX&' y2sis5g>¨JFW~[ME MhVEx=Gw.j Ƭɨ*&H̹F~k+p8{{iG4Buotp 0B$ߌR fTVGQJh)<>3@qeЎSrɸ!!CwTaH5ApQȢaqGQA)%̉K,Ƙ.>n&,Su/\\Q|KhGEoW.]Hs—s٨ɲ#S%W^%T$1Tj4oҘmsY 

高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001时,求
高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001
设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001时,求出数N

高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001时,求
0 ≤ |xn| = |cos (nπ/2)| / n ≤ 1/n,
由夹逼定理知,lim |xn| = 0,显然lim xn也为0.对任意ε>0,可知当
|cos(nπ/2)|/n < ε时,|xn - 0| < ε.
当n变化时,cos(nπ/2)只能为1,0,-1,0.若ε = 0.001,则可知若n > 1000,则必有
|cos(nπ/2)|/n < 1/1000 < ε.
另一方面,若n = 1000,则|cos(nπ/2)|/n = 1/1000 = ε.不满足|xn - 0|< ε.因此所求的最小正整数N应为1000.当n > N = 1000时,|xn - 0| < ε = 0.001.

高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与其极限之差小于证书E,当E等于0.001时,求 设数列Xn的一般项Xn=(1 )*cos 2分之n派,limXn=? 高数书上数列极限例题2,例2:已知Xn=(-1)n/(n+1)2,证明数列{Xn}的极限是0.证:|Xn-a|=|(-1)n/(n+1)2-0|=1/(n+1)20(设& 已知数列{xn}满足x1,2xn+1-xn=n-2/n(n+1)(n+2))(1)设an=xn-1/n(n+1),求数列{an}的通项公式.(2)设数列{bn}满足2^bn*an=1,求数列{1/cosbn*cosbn+1}的前n项和Sn 设数列{Xn}的一般项Xn=1/n * cos(n∏/2) .问Xn的极限是什么?求出N,使当n设数列{Xn}的一般项Xn=1/n * cos(n∏/2) .问Xn的极限是什么?求出N,使当n>N时,Xn与其极限之差的绝对值小于正数ε. 当ε=0.001 高一必修五数列已知数列{an}的前n项和为Sn若Sn=[(1)^n+1]xn,求a5+a6及an若Sn=(3^n)+2n+1,求an 设曲线y=1/x在点(n,1/n)(n属于N*) 处的切线与x轴的交点的横坐标为Xn求数列{Xn}的前n项和Sn 设数列Xn的一般项Xn=(1 )*cos 2分之n派,limXn=0.当n>N时,Xn与其极限之差的绝对值 已知数列{xn}满足x1=1,2xn+1-xn=n-2/n(n+1)(n+2)) (1)设an=xn-1/n(n+1),求数列{an}的通项公式.(2)设数列{bn}满足2^bn*an=1,求数列{1/(cosbn*cosbn+1)}的前n项和Sn关键是第二问 第一问我我会了 数列{an }的前n项和为Sn,已知a1=1,nan-λSn=n(n-1),(n>+2,n属于N+,λ属于R),数列{Sn/n}为等差数列.(1).求实数λ的值(2).设bn=(an+λ)xn,求数列{bn}的前n项和Tn. 已知数列{xn}满足x1=1,2xn+1-xn=n-2/n(n+1)(n+2)) (1)设an=xn-1/n(n+1),求数列{an}的通项公式. 高数书上数列极限例题2,如下不懂求帮助!例2:已知Xn=(-1)n/(n+1)2,证明数列{Xn}的极限是0.证:|Xn-a|=|(-1)n/(n+1)2-0|=1/(n+1)20(设&我真的很想知道书上这么写的依据,为什么设& 设数列的一般项Xn=(1/n)(cosnpi/2) pi指的是圆周率.问limXn=?(n趋向无穷) 求出N,使当n>N时,Xn与其极限之差的绝对值小于正数e,当e=0.001时,求出数N.请用汉字解释下为什么这么做,刚学这一内容.说得好, 高数 数列极限 课本例题 如题:已知Xn=(-1)^n/(n+1)^2,证明数列{Xn}的极限是0.证 |Xn-a|=|[(-1)^n/(n+1)^2]-0|=1/(n+1)^2 两个高数问题中数列极限的问题,要用定义证明,(1)设数列{Xn}有界 ,又lim(n->∞)Yn=0,证明:lim(n->∞)XnYn=0.(2)对于数列{Xn},若X2k-1->a(k->∞),x2k->a(k->∞),证明:Xn->a(n->∞). 高一数学:已知数列xn满足x(n+3)=xn,x(n+2)=(xn+1-xn)的绝对值,若x1=1,x2=a,则数列xn的前2013项和S2013为(a 在坐标平面内有一点列An(n=0,1,2.),其中A0=(0,0),An=(Xn.n)(n=1,2,3.),并且线段AnA(n+1)所在直线的斜率为2^n(n=1,2,3.)(1)求x1,x2(2)求出数列{Xn}的通项公式Xn.(3)设数列{nXn}的前n项和为Sn,求Sn.麻烦给出过 高数题 1 若Un的极限等于a,证明Un的绝对值的极限等于a 的绝对值2 还有,设数列的一般项Xn= n分之cos nπ/2 问 Xn的极限是?