若直线y=x+b与曲线 y=根号(1-x^2)恰有两个公共点,则实数b的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:27:18
若直线y=x+b与曲线 y=根号(1-x^2)恰有两个公共点,则实数b的取值范围
xN@_#Vhö>!z)7PKib( Q#`)ʻζxw9|;vԤ9m/VeEi+v .ZlBS :N=y|δV*a:Cq~_Vf#_ pj8Ë-f5F~ƈ#b

若直线y=x+b与曲线 y=根号(1-x^2)恰有两个公共点,则实数b的取值范围
若直线y=x+b与曲线 y=根号(1-x^2)恰有两个公共点,则实数b的取值范围

若直线y=x+b与曲线 y=根号(1-x^2)恰有两个公共点,则实数b的取值范围
y=√(1-x^2)是一个半圆,在X轴上方,
将y=x+b代入半圆方程,
x+b=√(1-x^2),(1)
2x^2+2bx+b^2-1=0,
因有两个交点,故判别式应大于0,
4b^2-8(b^2-1)>0,
b^2<2,
-√2由(1)式可知x+b>=0
而要保证有两个交点,y=x+b应在半圆上顶点和左顶点连线的左边,
x<=-1,
-1>=x,
b>1,
∴1