十字相乘法详细解法要举例

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:49:55
十字相乘法详细解法要举例
xYR~v ffFxopH$T\ 0XȀXq 2IHp7Gҕ_a=3lIJU3=}~sֽl~kel-5KLs 'y^ޛ%u{੺ZyfVw[fyUa?c| X䱵ML+ye"OرK%@7ά`2ymB}UeC#ݒ~UL" \<$$2&T9a3&Ƅ&ʉY0Ԅ7ja;udӶ=ܘܚ|cV2,W2vkY٢jsmqPP}=^"x U8ug=5w'YiCfj}fmLW=2:'рWLicY[ŗfy *i`iZib۫p ZodbB;?qy wE; $$yqfPbᩑ+5֟T"k}ҋ_Nj$γ5uF2ݡ^6Oy$[c֬.(S?g%:=49BUU7֟y01$N`J0  =*q WXgY~/Ph/]`- S,rV)ν yՙOG/GF6/?`|G!g㱻ÁᑱG_G4mkw`k`w|hTQuHiÇj_HFz,CD(15Ѿ j$Pcz0n8S~-0qlDCha0?DH E-w|]}JOjsm-}`m\y:v޶kM%VK?Fv<wMϣ/u=x!&.\֒_*(p`w/Hrs%746 A-w%0UzIͼЫz1Vt_c'h?3_1Vt\9\EwН#FpkMOÁzɉUzqO ݫϛg Br/pKFH@>QqJ 4CF\Rvlimd}fZ/֚[s %TMiM]Xq! q[4ۣIaćk@]Nm5\H Gqyk=p v~,M4C5m?Oܲ[e;/Vp\THeSEfB :it4[<[9^ܨ4w'c9k-Q_8 "k Mw]ﵞxI(ϟ hFcj$.

十字相乘法详细解法要举例
十字相乘法详细解法
要举例

十字相乘法详细解法要举例
十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式.这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.
很简单的 哟!
x²+x-6=(x-2)(x+3)

x²+x-6【先想想一个数乘另一个数怎样才能等于-6,相等于-6的就有 1乘-6,2乘-3,3乘-2,6乘-1,这么多,再看x²+x-6中间的x也就是1乘x,想要等于1,就得看x²+x-6中的最后的-6,也就是说一个数换乘另一个数最后积要等于-6,相加又要等于1,那就只有-2乘3了】
so.x²+x-6=(x-2)(x+3)

十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过...

全部展开

十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
例:x2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
补充:
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
因式分解就是指各项的次数相等,字母交换后式子不变的形式,
这类题目就是利用交换后式子不变而各项次数有相同的特点从对称这种观点上推出结果,比如看这样的一个式子:
a^2(b-c)+b^2(c-a)+c^2(a-b)分解因式,
当a=b时这个式子的值是为零的,所以我们有对称性和他是3次的可以直接写出来他的分解结果:
(a-b)(b-c)(c-a)=0
实际上这个例子不算好,因为他的对称性有一定的局限,所以在这里分解的时候要求我们写字母的顺序时注意,否则就成多出一个负号了,在这里只是说明这种方法的利用.

收起