求lim(x->1)(1+cosπx)/(x-1)^2令t=x-1,则lim(x->1)(1+cosπx)/(x-1)^2=lim(t->0)[1+cosπ(t+1)]/t^2=lim(t->0)(1-cosπt)/t^2=lim(t->0)(π/2)^2*{2[sin(πt/2)]^2}/(πt/2)^2=(π^2)/2运算过程中,第二步1+cosπ(t+1)是怎么转化为第三步(1-cosπ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:47:34
x){)'3WBPSP;9|C>PP3%%@ӎXUh-ѵ3Ќjhj iJ47MѪ6.rK8Z}(Ȋ37zu_oɎ:yڥ?YCߓ/y3Ɏ] e;:`I*'}0
| 5H%XyÞj/PA[ i2
55! 2@.FօJhhtħsV@,zq˙@R` Z0a~qAb4bl';z{>s/$ 3
求lim(x->1)(1+cosπx)/(x-1)^2令t=x-1,则lim(x->1)(1+cosπx)/(x-1)^2=lim(t->0)[1+cosπ(t+1)]/t^2=lim(t->0)(1-cosπt)/t^2=lim(t->0)(π/2)^2*{2[sin(πt/2)]^2}/(πt/2)^2=(π^2)/2运算过程中,第二步1+cosπ(t+1)是怎么转化为第三步(1-cosπ
求lim(x->1)(1+cosπx)/(x-1)^2
令t=x-1,则
lim(x->1)(1+cosπx)/(x-1)^2
=lim(t->0)[1+cosπ(t+1)]/t^2
=lim(t->0)(1-cosπt)/t^2
=lim(t->0)(π/2)^2*{2[sin(πt/2)]^2}/(πt/2)^2
=(π^2)/2
运算过程中,第二步1+cosπ(t+1)是怎么转化为第三步
(1-cosπt)的
求lim(x->1)(1+cosπx)/(x-1)^2令t=x-1,则lim(x->1)(1+cosπx)/(x-1)^2=lim(t->0)[1+cosπ(t+1)]/t^2=lim(t->0)(1-cosπt)/t^2=lim(t->0)(π/2)^2*{2[sin(πt/2)]^2}/(πt/2)^2=(π^2)/2运算过程中,第二步1+cosπ(t+1)是怎么转化为第三步(1-cosπ
1 + cos(π(t + 1))
= 1 + cos(π + πt)
= 1 + [- cos(πt)],π + πt至少在第三象限中,cos(π + x) = - cos(x)
= 1 - cos(πt)
不明白
求函数极限:lim(x->0) (cos x)^(1/x)
求极限lim(x→0) cos(1/x)
lim(x->π)(π-x)cos(1/(x-π))
求lim(x→0+) ( 2/π*cosπ/2(1-x))/x的极限
X趋向于π,求lim((sin^2 X)/()1+cos^3 X)
lim(cos(sqrt(x)))^1/x
求lim(x→0)x cos 1/x lim(x→∞)x^2/ (3x-1)的极限
求极限lim(x趋于无穷)cos√(x+1)-cos√x,用夹逼准则
求极限lim(x趋于无穷)cos√(x+1)-cos√x,用夹逼准则
求函数极限lim x→0 e^x-x-1/x cos x
求lim (sec^2 x求极限lim (sec^2 x - 1 )/(1-cos x) X-0请写出过程,
求极限:lim(x→0)ln(1+x²)/ (sec x- cos x)
求 lim(x→∞)[sin(2/x)+cos(1/x)]^x的极限.
利用lim sinx/x =1或等价无穷小量求极限 lim (cosαx-cosβx)/x^2 x趋向0
高数题 lim(x-无穷大) x cos 1/x lim(x~无穷大) Xcos 1/X
求极限:lim(x→1/2) (2x-1)cos(1/(2x-1))
求极限lim(x→0)(1-根号cosx)/[x(1-cos根号x)]
Lim[(3x)^1/2] * e^(cos(8pi/ x) ( x-->+0) 求极限?