四年级的数学小知识,短点的要短的啊

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 17:39:42
四年级的数学小知识,短点的要短的啊
xZIo#v+Dl̠m "oE/qN⽬J%"&EIDMВHŖ8t׭a!߹X"6eb2XU=ws/~Zjױ޺Uis6zim~k9_{벒}񧟖wo)ɹWoR!1 ZPhBB -"bB -!ED(,BPL"EXa,GE8&qNpRD"HHDcDD"$D$)AD4$aBQh\D"i"ED D,.b KxP5xX#"q'E"(HD",DL$`mB$"IM$C"ɈHFE2&q3pG!Ax$ WpKrm#Ǒu;ryip"B>D ^F ~H J cK/7/B]bZ"͒*s:oҥ] KZD&Ch| ,,26h;Dzg7 "h._ݼ9HѿX]_:<_;vyA_qky\{W9۷%{!uh[fl] dž}9m'|bEy&'#b>ۼbOoÀt!/r5LK#@ ' *_aE{t'V y/-=y*M$yDNre]OS(3okvN9+9g0{wLeoqm0G^Q´ pFfs$W[3:f0KԽ}?ú=0죲}0M-uWšӒt 7H:9#nyȡFSQ㳗/?_j~JVӅ=|ẟOA2H)7d>&Qj#tBwʒ~=ߡKl|xHs5(s!6b ֬XU>etj'[*W&ioe1I?͚,[=l՜ɡ58F4t#t @W< Ǡg#!2evYhO Ϲ?? BiEomv{e: /Ǻ3^\=eyЁJ[?|@Y x:B&n-^9ޢ`0(04dwIeZJpΘAQzͅZrNnq B8(g2~\r Y2 (Nh bNw3Ժ;-V} dB /ݣ=#DQ-B˘ٖ1-c,Z&AeGhV; F 2Edqw&V.cO}sx$S UPE ę`p4JBWm_S٦Oe]s62:&,Eu_APC1`̷QO: @IJo=$ӻϘt"uR:8|3N=3f,&vF#Rqwd?XoiU+0u 6;wc_dP'80LkNkdg6C[ĨF[SgΛ*'@u|CXx.׼L'#q晃Gd)?6 = |u戉)VLldY]+λGJ[i~MA_WG*2u^M 3c\QᯚɴWξ(AyX@#'}(6cm^Evds.v%CQHbb0+iV"_j̾m<ЃQg\p.Vɜ6 #YMuԠ!lԮlqʲQ EQu:}'uKKf7g|.@ i<0 g.w.%jMx`F+aWSlyQBTiE4̂zHC\`$0K63=T ݆u4|IVro贋M]8UC͑m!B&N1VrIQ yw* 1:7|ehӱ~ .a #H 4FYa柤Hldmc1m67;*a h*fE!.oACjx6fBS\u*oΥ"C>~?Z|?|~<Oi{ħ .xk-Lmy~C pft #9y XGwze/)q-2.D%ʺYw5cn.wt]im[h=ZLVhWQΧϫ0VfvZ]P2;}o3>ljxZjNRywMZʳmW蜚}Aɚn,y_ßY:iЖ7PJuKt@x"M"3A6թ58& /F2[baHFd>F BV c0Kv,cF"u>3ez|G9\v^ϡhttLY{E"^zD޻;@skc[ZPCEwDq?ٷQ˒ty2mïߠJѤa /xbJZ/أ6?)/.E`Nnm"t"r'pĵ*'DW7zڷ0'`ʍ{FE˭ jG5GSeMqkOgBg1>UphS+?䩒^DT,fwJg=O&9֭VTԾ8*NWCG5g{iu/i~"tJ<'_U}MՉ-L?Pr#GQ jEJCqX}5]+N;ءk{4 ': CN8G/LT jI}5yg9ŎҽC( 2__̺+vs/y%v2m't#xWO=nΞ+?@$P;v6^ӗD84.|yx__)_WؤTRRSz&>%4mpՏú77wZ:H sgJ*}j;Lji ;-U,7-¬03>-nGBu8C1?m0ћ,

四年级的数学小知识,短点的要短的啊
四年级的数学小知识,短点的
要短的啊

四年级的数学小知识,短点的要短的啊
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136.

0.618 黄金比
圆周率 3.141592657....
黄金分割 1.618
勾股定理 3*3+4*4=5*5
黄金比
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们...

全部展开

0.618 黄金比
圆周率 3.141592657....
黄金分割 1.618
勾股定理 3*3+4*4=5*5
黄金比
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"斐波那契数列",这些数被称为"菲斐波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列 1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
给你这网址把,里面有四年级的题目,反正小学的题目都有的,奥数网

收起

1.、王菊珍的百分数
我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
2、托尔斯泰的分数
俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”
1、数学的本质在於它的自由. 康扥尔(Cantor) ...

全部展开

1.、王菊珍的百分数
我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
2、托尔斯泰的分数
俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”
1、数学的本质在於它的自由. 康扥尔(Cantor)
2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor)
3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert)
4、数学是无穷的科学. 赫尔曼外尔
5、问题是数学的心脏. P.R.Halmos
6、 只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert
7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯
3、雷巴柯夫的常数与变数
俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。”
二、用符号写格言
4、华罗庚的减号
我国著名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”
5、爱迪生的加号
大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。”
6、季米特洛夫的正负号
著名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。”
三、用公式写的格言
7、爱因斯坦的公式
近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。”

收起

在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全...

全部展开

在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全世界通用的数字符号。

收起

用量角器量角的要点:一、点对点。二、线对边。三、刻度要看另一边。