已知数列{an}:1/2,1/3+2/3,1/4+2/4+3/4,1/5+2/5+3/5+4/5,…,那么数列{bn}={1/ana(n+1)}前n项的和A,4[1-1/(n+1)] B,4[1/2-1/(n+1)] C,1-1/(n+1) D,1/2-1/(n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:52:12
已知数列{an}:1/2,1/3+2/3,1/4+2/4+3/4,1/5+2/5+3/5+4/5,…,那么数列{bn}={1/ana(n+1)}前n项的和A,4[1-1/(n+1)]    B,4[1/2-1/(n+1)]    C,1-1/(n+1)    D,1/2-1/(n+1)
xQJ1~,T} "v^*""z/Zپt-{WpKׂK&qo뗺i\bEMQ3pD8"1 >q(! ì dJ* z~Q_]NPO]V BlOoww`$Є d Hm1.t/9uo$7 )^Y6Ly{mVs+̪YoɼEQ ݌W#9(/Q yow2

已知数列{an}:1/2,1/3+2/3,1/4+2/4+3/4,1/5+2/5+3/5+4/5,…,那么数列{bn}={1/ana(n+1)}前n项的和A,4[1-1/(n+1)] B,4[1/2-1/(n+1)] C,1-1/(n+1) D,1/2-1/(n+1)
已知数列{an}:1/2,1/3+2/3,1/4+2/4+3/4,1/5+2/5+3/5+4/5,…,那么数列{bn}={1/ana(n+1)}前n项的和
A,4[1-1/(n+1)] B,4[1/2-1/(n+1)] C,1-1/(n+1) D,1/2-1/(n+1)

已知数列{an}:1/2,1/3+2/3,1/4+2/4+3/4,1/5+2/5+3/5+4/5,…,那么数列{bn}={1/ana(n+1)}前n项的和A,4[1-1/(n+1)] B,4[1/2-1/(n+1)] C,1-1/(n+1) D,1/2-1/(n+1)
an=1/(n+1)+ 2/(n+1) +3/(n+1) +……n/(n+1)=1/(n+1)[n(n+1)/2]
=n/2.
bn=1/[ana(n+1)]=4/[n(n+1)]=4[1/n-1/(n+1)]
数列{bn}的前n项和为:b1+b2+b3+……+bn
=4[1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=4[1-1/(n+1)]=4n/(n+1).
选A.