已知函数f(x)=1/2(x-1)^2+lnx-ax+a.(1)若a=3/2,求函数f(x)的极值 (2)若对任意的x∈(1,3),都有f(x)>0成立.高中数学题 第二问求详细解答.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:37:19
已知函数f(x)=1/2(x-1)^2+lnx-ax+a.(1)若a=3/2,求函数f(x)的极值 (2)若对任意的x∈(1,3),都有f(x)>0成立.高中数学题 第二问求详细解答.
xTn@HZ[1R轒{)BI( J%T! jI0Įз)"ZXݙ3ʦٯ+f viHTְJ$`-lgӈu-.qwl̝"f6\Բ$2&. N:ƭۏ٨Xomے_+;{S5z^}Bl:2}՛Mx0fL+FJJ4BgbQ,!nRu^p zs8e`6,.eX+*[H`[֒ꖲ ?]e^V3NаjQ]F"U~š Srp A|-xG^`F5w}Kр5'[拕zX1&i1s|EW[H j|q*kf2Z00wJ 6P-lbтf{b2MV +?*k5fvBF)CVϤŏr

已知函数f(x)=1/2(x-1)^2+lnx-ax+a.(1)若a=3/2,求函数f(x)的极值 (2)若对任意的x∈(1,3),都有f(x)>0成立.高中数学题 第二问求详细解答.
已知函数f(x)=1/2(x-1)^2+lnx-ax+a.(1)若a=3/2,求函数f(x)的极值 (2)若对任意的x∈(1,3),都有f(x)>0成立.高中数学题 第二问求详细解答.

已知函数f(x)=1/2(x-1)^2+lnx-ax+a.(1)若a=3/2,求函数f(x)的极值 (2)若对任意的x∈(1,3),都有f(x)>0成立.高中数学题 第二问求详细解答.
AFDS564,
(1)f′(x)=x+1/x-5/2=2x2-5x+2/2x,f'(x)=0,得x1=1/2,或x2=2,
根据函数性质分析得:
函数f(x)在x=1/2处取得极大值f(1/2)=7/8-ln2,
函数f(x)在x=2处取得极小值f(2)=ln2-1
(2):f′(x)=x+1/x-(1+a),x∈(1,3)时,x+1/x∈(2,10/3)
当1+a≤2,即a≤1时,x∈(1,3)时
f'(x)>0,函数f(x)在(1,3)是增函数∀x∈(1,3),f(x)>f(1)=0恒成立
当1+a≥10/3,即a≥7/3时,x∈(1,3)时
f'(x)<0,函数f(x)在(1,3)是减函数∀x∈(1,3),f(x)<f(1)=0恒成立,不合题意
当2<1+a<10/3,即1<a<7/3时,x∈(1,3)时
f'(x)先取负,再取,最后取正,函数f(x)在(1,3)先递减,再递增,
而f(1)=0,∴∀x∈(1,3),f(x)>f(1)=0不能恒成立
综上,a的取值范围是a≤1
希望能够被您采纳,