谁知道无循环小数如何转换成分数呢?例如:0.333333……=?;0.15555555……=?0.123333……=?0.012343434……=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 18:24:57
谁知道无循环小数如何转换成分数呢?例如:0.333333……=?;0.15555555……=?0.123333……=?0.012343434……=?
xTn@~T"M*Gj/f !HB&M0QQT;ks:1U{5 7|K0{ 1K|b[[Ez%VA3I{f˔!]:kܼޝ5g{( ]Y9{OfoP?k5L9eUv.l,5NG yP #;azv.&;ףtS8Eg&%?ˆN ٩'D{o- !^2^t\V EL-sU+.D)L& n܈DK_7U"9YZw$"dFtxSiN:_v wS96jn5eOA<B j}ꪠUW;FUWހw& QCb" *Ut:Dq4=jNzb˅ǽrO nȁ-ynfEEy%n[o!^i鍕B*|;dr=*AqYmvF[RMHk:rS$?m U

谁知道无循环小数如何转换成分数呢?例如:0.333333……=?;0.15555555……=?0.123333……=?0.012343434……=?
谁知道无循环小数如何转换成分数呢?例如:0.333333……=?;0.15555555……=?
0.123333……=?0.012343434……=?

谁知道无循环小数如何转换成分数呢?例如:0.333333……=?;0.15555555……=?0.123333……=?0.012343434……=?
事实上,所有的无限纯循环小数都可以转换为分数:
假设每个循环节的长度是n,它对应的分数就是a/(10^n-1),a为一个循环节的数字.如
0.abcdabcdabce...
分数就是abcd/9999.而对于无限混循环小数x必然存在y,m和n使得x = m + y / n,m为一个有限小数,y为一个无限纯循环小数,n是10的整数次幂.从而把无限混循环小数也转化成了分数.正因为所有的无限循环小数都可以转化为分数,我们才把无限循环小数归入有理数的范围.
简单的说就是:循环节是一位的,分数就是:循环节/9,所以0.333333……3/9=1/3;两位的,分数就是:循环节/99
以此类推,所以0.15151515151515……=15/99,0.15555555……=(15-1)/90=7/45,该方法是用小数点后到开始循环的数减去前面不循环的数值再除以90.