已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)的平方. (1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:36:03
已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)的平方. (1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B
已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)的平方. (1)求线
段AB、CD的长;
(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;
(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:①PA-PB/PC是定值;② PA+PB/PC是定值,请选择正确的一个并加以证明.
已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)的平方. (1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B
1、
∵|m-2n|=-(6-n) ²
∴m-2n=0,6-n=0
∴n=6,m=12
∵AB=m,CD=n
∴AB=12,CD=6
2、A——M——C——B——N——D
∵BC=4
∴AC=AB-BC=12-4=8
∴AD=AC+CD=8+6=14
∴BD=AD-AB=14-12=2
∵N是BD的中点
∴BN=DN=BD/2=2/2=1
∴AN=AB+BN=12+1=13
∵M是AC的中点
∴AM=CM=AC/2=8/2=4
∴MN=AN-AM=13-4=9
3、
(1)A——C——B(D)——P
∵B、D重合
∴BC=CD=6
∴AC=AB-CD=12-6=6
∴PA=AB+PB=12+PB
PC=BC+PB=6+PB
∴PA+PB=12+PB+PB=12+2PB=2(6+PB)
∴(PA+PB)/PC=2(6+PB)/(6+PB)=2
∴(PA+PB)/PC是定值2
(2)P——A——C——B(D)
∵B、D重合
∴BC=CD=6
∴AC=AB-CD=12-6=6
∴PB=AB+PA=12+PA
PC=AC+PA=6+PA
∴PA+PB=PA+12+PA=12+2PA=2(6+PA)
∴(PA+PB)/PC=2(6+PA)/(6+PA)=2
∴(PA+PB)/PC是定值2
综合(1)、(2)得:(PA+PB)/PC是定值2
这题我曾经做过,下面是网址.朋友,别忘了采纳哦.