验证y=4x³-5x²+x-2,x∈[0,1]在给定区间上满足拉格朗日中值定理,并求出结论中ξ值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 15:22:34
验证y=4x³-5x²+x-2,x∈[0,1]在给定区间上满足拉格朗日中值定理,并求出结论中ξ值
x){J[ ck]S0ZBHQGGa9+tݬ=^NdG׳ _lق=L6}k6y>Mm66=m|v$N;iF&v AFqFچ@! CM4 M[m @`htnXٹ}چ`m046z`ƚF&@:)@tѥ^4'';<ٱܶs!/.H̳3O

验证y=4x³-5x²+x-2,x∈[0,1]在给定区间上满足拉格朗日中值定理,并求出结论中ξ值
验证y=4x³-5x²+x-2,x∈[0,1]在给定区间上满足拉格朗日中值定理,并求出结论中ξ值

验证y=4x³-5x²+x-2,x∈[0,1]在给定区间上满足拉格朗日中值定理,并求出结论中ξ值
f(x)=4x³-5x²+x-2 f'(x)=12x^2-10x+1 f(1)-f(0)=f'(ζ)(1-0) 12ξ^2-10ξ+1=0
ζ=(10+2根号13)/24 或 ζ=(10-2根号13)/24 而ζ∈[0,1] 两个ζ均满足