解微分方程dy/dx=((x+y-1)^2)/((x+y+1)^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:04:42
解微分方程dy/dx=((x+y-1)^2)/((x+y+1)^2)
xP; @ʔYuLc DA:e!v""~z+!V&1NVf̌c|>{R#:c\#A9 ouL|stCe-HV۝Sl"HSYN,+&j2LY[giѪEb#,6x8^0\ԸI3hIb 6CKCh|To)r_e !5{{? *50y Ψ

解微分方程dy/dx=((x+y-1)^2)/((x+y+1)^2)
解微分方程dy/dx=((x+y-1)^2)/((x+y+1)^2)

解微分方程dy/dx=((x+y-1)^2)/((x+y+1)^2)
两边加1得
d(x+y)/dx = [(x+y-1)/(x+y+1)]^2 + 1
设x+y = u
那么du/dx = [(u-1)^2+(u+1)^2]/(u+1)^2 = 2(u^2+1)/(u+1)^2
所以(u+1)^2/(u^2+1) du = 2dx
积分得
u + Ln[2 - 2 (1 + u) + (1 + u)^2] = 2x + C
所以方程的通解为
x+y + Ln[2 - 2(x+y+1) + (x+y+1)^2 ] = 2x+c