3n(3n+3)(3n+6)(3n+9)+81的因式分解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 10:12:09
xQJ@~ v
y>(hŶ JѓhK6MbOy'.*RD|~3.Yr <dFw>)3ڄKo:8`m#j.Lr$PPu[P-aI1b*騟'`7ty/=n_V
-N-H y!jIn
`.2e(6$Z+a9 q)GtoqTzZ?^ˈU/,:w'~Z_ߑG;V$7Zmtb"+ڬj}++sfsCK6|
3n(3n+3)(3n+6)(3n+9)+81的因式分解
3n(3n+3)(3n+6)(3n+9)+81的因式分解
3n(3n+3)(3n+6)(3n+9)+81的因式分解
3n(3n+3)(3n+6)(3n+9)+81=(3n)^4+(3n)^3(3+6+9)+(3n)^2((6*9+3*6+3*9)+3n*(3*6*9)+81
=81n^4+486n^3+891n^2+486n+81
看来是我对因式分解出了点问题
3n(3n+3)(3n+6)(3n+9)+81=81{n(n+1)(n+2)(n+3)+1}
=81{(n^2+3n)(n^+3n+2)+1}=81(n^2+3n+1)^2
楼下是对的,现在成楼上的了
3n(3n+3)(3n+6)(3n+9)+81
=81n(n+1)(n+2)(n+3)+81
=81((n^2+3n)(n^2+3n+2)+1)
=81((n^2+3n)^2+2(n^2+3n)+1)
=81(n^2+3n+1)^2
3n(3n+3)(3n+6)(3n+9)+81
=81n(n+1)(n+2)(n+3)+81
=81[n(n+1)(n+2)(n+3)+1]
=81{[n(n+3)][(n+1)(n+2)]+1 }
=81[(n²+3n)(n²+3n+2)+1 ]
=81[(n²+3n)²+2(n²+3n)+1]
=3^4(n²+3n+1)²
(2n+3n )2次方 -(6n+9n)N为正整数
1*N+2*(N-1)+3*(N-2)+...+N*1=1/6N(N+1)(N+2)
如果正整数n使得[n/2]+[n/3]+[n/4]+[n/5]+[n/6]=69,则n为( ).([ n ]表示不超过n的最大整数)
求证;任意自然数n,n(n+5)-(n-3)(n+2)的值都能被6整除.
已知m,n为正整数,求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
lim(n→∞)(3n^3-2n+1)/n^3+n^2 快
用二项式定理证明:2^n>2n(n≥3,n∈N)
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
证明3^n-2^n>2^n,(n>1,n∈Z)
n满足(n-2010)平方=(2011-n)=3 求(n-2010)(2011-n)
n(n+1)/2+1/3n(n+1)(n-1)=一步一步,
比较3^n-2^n与 (n-2)2^n+2n^2的大小
证明:3^n>1+2n(n>=2,n∈N*)
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
当n为正整数时,定义函数N(n)表示n的最大奇因数.N(3)=3N(10)=5S(n)=N(1)+N(2)+N(3)+...+N(2^n)当n为正整数时,定义函数N(n)表示n的最大奇因数.如N(3)=3N(10)=5.记S(n)=N(1)+N(2)+N(3)+...+N(2^n)则S(4)=---- S(n)=------求
1/3[n(n+1)(n+2)]化简