设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 00:30:16
设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时0
xRMN@JT0e!.kCt% DH" Fn tU`@!q/~Q'VXW]t8@cǮy LkǬ\=o5Gcg ieCG5~j^'ٿ$H#[?Y<}=!ئceu'&y=zc(}k!k20]]šd7,{M_7zyS,*7be» 'Da~g^CT]{xۇpKw!IXJEv"EQWWv\-MPY'*"?ɉePZX‘C?>%

设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时0
设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时
0

设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时0
(1)令m=n=0 那么有f(0)=f(0)的平方
那么f(0)就等于0或1
若f(0)=0 那么令m=0 n>0那么f(m+n)=f(0+n)=f(0)*f(n)=0
这样对于任何n>0都有f(n)=0 这与条件x>0时00 所以f(n)在0到1之间 又因为函数f(x)在R上恒大于0 所以f(m+n)m
所以对于任意实数x2>x1 都有f(x1)>f(x2)
所以函数f(x)在R上单调递减

设函数的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0 设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)*f(y),当X>0,0 设函数f(X)是定义域在R上的函数,且对于任意实数x y都有f(x+y)=f(x)+f(y),且当x>0时,f(x) 设函数f(x)的定义域为R,对于任意实数m,n总有f(m+n)=f(m)*f(n),且x>0时,0 设函数f(X)是定义域在R上的函数,且对于任意实数x y都有f(x+y)=f(x)f(y),且当x>0时,0 设函数f(X)是定义域在R上的函数,且对于任意实数x y都有f(xy)=f(x)+f(y),若f(8)=3,则(根号2)= 设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)*f(n).且当x>0时,f(x)>1.1)求证:f(0)=1,且当x 设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时0 设函数f(X)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,o [50分悬赏]设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)*f(n).且当x>0时,0 设函数f(x)的定义域为R,对于任意的实数x,y都有f(x+y)=f(x)+f(y),又当x>0时,f(x) 设函数f(x)的定义域为R,且对于任意实数a,b,都有f(a+b)+f(ab)=2f(a)f(b),求证:f(x)为偶 设函数f(x)的定义域为R,且对于任意实数a,b,都有f(a+b)+f(ab)=2f(a)f(b)求证f(x)为偶函数 设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M,有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数 若定义域为R的函数f(x)是奇函数 当X∈【0,+∞)时f(x)=|X-a2|-a2且f(x)为R上的4高调函数,那 设函数f(x)的定义域为D,若存在非零实数m使得对于任意x∈M,有x+m∈D,且f(x+m)≥f(x),则称f(x)为M上的m高调函数 若定义域为R的函数f(x)是奇函数 当X∈【0,+∞)时f(x)=|X-a2|-a2且f(x)为R上的4高调函数,那 设函数f(x)的定义域为D,若存在非零实数m,使得对于任意x∈M,(M包含于D),有(x-m)∈D且f(x-m)≤f(x),则称f(x)为M上的m度低调函数.若果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=| x- a^2 |-a^2,且f(x)为R 设函数f(x)的定义域为R,对于任意实数m,n,恒有f(m+n)=f(m)*f(n),且当x>0时,0 设函数f(x)的定义域为R,对于任意实数m,n,恒有f(m+n)=f(m)*f(n),且当x>0时,0